General Chemistry
General Chemistry
7th Edition
ISBN: 9780073402758
Author: Chang, Raymond/ Goldsby
Publisher: McGraw-Hill College
bartleby

Videos

Question
Book Icon
Chapter 18, Problem 18.31QP
Interpretation Introduction

Interpretation:

Vapor pressure (Kp) of water has be calculated given gases phase reaction at 25°C.

Concept Information:

Thermodynamics is the branch of science that relates heat and energy in a system.  The laws of thermodynamics explain the fundamental quantities such as temperature, energy and randomness in a system.  Entropy is the measure of randomness in a system.  For a spontaneous process there is always a positive change in entropy. Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work.  The free energy is represented by the letter G.  All spontaneous process is associated with the decrease of free energy in the system.  The equation given below helps us to calculate the change in free energy in a system.

ΔG = ΔΗ- TΔS

Where,

  ΔG  is the change in free energy of the system

  ΔΗ is the change in enthalpy of the system

  T is the absolute value of the temperature

  ΔS is the change in entropy in the system

Kp:  The equilibrium constant calculated from the partial pressures of a reaction equation. It is used to express the relationship between product pressures and reactant pressures. It is unites number, although it relates the pressures.

Kp=Kc(RT)Δn(or)Kc=Kp(RT)Δn(or)Kp=(RT)ΔnΔn=Product - Reactant

Free energy(ΔG0): In thermodynamics free energy or Gibbs free energy is the energy that is used to express the total energy content of a system.  According to second law of thermodynamics, in all spontaneous process is associated with the decrease in free energy of the system.  That is the change in free energy will be negative.

Vapour pressure: Vapor pressure is defined as the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases (solid or liquid) at a given temperature in closed system.

Vapour pressure is nothing but the tendency of particles to escape from the liquid (or) solid.

Blurred answer
Students have asked these similar questions
In addition to the separation techniques used in this lab (magnetism, evaporation, and filtering), there are other commonly used separation techniques. Some of these techniques are:Distillation – this process is used to separate components that have significantly different boiling points. The solution is heated and the lower boiling point substance is vaporized first. The vapor can be collected and condensed and the component recovered as a pure liquid. If the temperature of the mixture is then raised, the next higher boiling component will come off and be collected. Eventually only non-volatile components will be left in the original solution.Centrifugation – a centrifuge will separate mixtures based on their mass. The mixture is placed in a centrifuge tube which is then spun at a high speed. Heavier components will settle at the bottom of the tube while lighter components will be at the top. This is the technique used to separate red blood cells from blood plasma.Sieving – this is…
Briefly describe a eutectic system.
13.53 Draw all stereoisomers formed when each compound is treated with HBr in the presence of peroxides. a. b. C.

Chapter 18 Solutions

General Chemistry

Ch. 18.6 - Practice Exercise Calculate the equilibrium...Ch. 18.6 - Prob. 2PECh. 18.6 - Prob. 3PECh. 18.6 - Prob. 1RCCh. 18 - Prob. 18.1QPCh. 18 - Prob. 18.2QPCh. 18 - Prob. 18.3QPCh. 18 - Prob. 18.4QPCh. 18 - Prob. 18.5QPCh. 18 - Prob. 18.7QPCh. 18 - Prob. 18.8QPCh. 18 - Prob. 18.9QPCh. 18 - 18.10 Arrange the following substances (1 mole...Ch. 18 - Prob. 18.11QPCh. 18 - Prob. 18.12QPCh. 18 - Prob. 18.13QPCh. 18 - 18.14 State whether the sign of the entropy...Ch. 18 - 18.15 Define free energy. What are its units? Ch. 18 - 18.16 Why is it more convenient to predict the...Ch. 18 - 18.17 Calculate ΔG° for the following reactions at...Ch. 18 - 18.18 Calculate ΔG° for the following reactions at...Ch. 18 - Prob. 18.19QPCh. 18 - Prob. 18.20QPCh. 18 - Prob. 18.21QPCh. 18 - Prob. 18.22QPCh. 18 - Prob. 18.23QPCh. 18 - 18.24 For the autoionization of water at...Ch. 18 - Prob. 18.25QPCh. 18 - Prob. 18.26QPCh. 18 - Prob. 18.27QPCh. 18 - Prob. 18.28QPCh. 18 - Prob. 18.29QPCh. 18 - Prob. 18.30QPCh. 18 - Prob. 18.31QPCh. 18 - Prob. 18.32QPCh. 18 - Prob. 18.33QPCh. 18 - Prob. 18.34QPCh. 18 - Prob. 18.35QPCh. 18 - Prob. 18.36QPCh. 18 - Prob. 18.37QPCh. 18 - Prob. 18.38QPCh. 18 - Prob. 18.39QPCh. 18 - Prob. 18.40QPCh. 18 - Prob. 18.41QPCh. 18 - Prob. 18.42QPCh. 18 - Prob. 18.43QPCh. 18 - Prob. 18.44QPCh. 18 - Prob. 18.45QPCh. 18 - Prob. 18.46QPCh. 18 - 18.47 Calculate the equilibrium pressure of CO2...Ch. 18 - Prob. 18.48QPCh. 18 - 18.49 Referring to Problem 18.48, explain why the...Ch. 18 - Prob. 18.50QPCh. 18 - Prob. 18.51QPCh. 18 - Prob. 18.52QPCh. 18 - Prob. 18.53QPCh. 18 - Prob. 18.54QPCh. 18 - Prob. 18.55QPCh. 18 - 18.56 Crystallization of sodium acetate from a...Ch. 18 - Prob. 18.57QPCh. 18 - Prob. 18.58QPCh. 18 - Prob. 18.59QPCh. 18 - Prob. 18.60QPCh. 18 - Prob. 18.61QPCh. 18 - Prob. 18.62QPCh. 18 - Prob. 18.63QPCh. 18 - Prob. 18.64QPCh. 18 - Prob. 18.65QPCh. 18 - Prob. 18.66QPCh. 18 - Prob. 18.67QPCh. 18 - Prob. 18.68QPCh. 18 - Prob. 18.69QPCh. 18 - Prob. 18.70QPCh. 18 - Prob. 18.71QPCh. 18 - Prob. 18.72QPCh. 18 - 18.73 (a) Over the years there have been numerous...Ch. 18 - Prob. 18.74QPCh. 18 - 18.75 Shown here are the thermodynamic data for...Ch. 18 - Prob. 18.76QPCh. 18 - Prob. 18.77QPCh. 18 - Prob. 18.78QPCh. 18 - Prob. 18.79QPCh. 18 - Prob. 18.80QPCh. 18 - Prob. 18.81QPCh. 18 - Prob. 18.82QPCh. 18 - Prob. 18.83QPCh. 18 - 18.84 Large quantities of hydrogen are needed for...Ch. 18 - Prob. 18.85QPCh. 18 - Prob. 18.86QPCh. 18 - Prob. 18.87QPCh. 18 - Prob. 18.88QPCh. 18 - Prob. 18.89QPCh. 18 - Prob. 18.90QPCh. 18 - Prob. 18.91QPCh. 18 - Prob. 18.92QPCh. 18 - Prob. 18.93QPCh. 18 - Prob. 18.94QPCh. 18 - Prob. 18.95QPCh. 18 - Prob. 18.96QPCh. 18 - Prob. 18.98QPCh. 18 - Prob. 18.100SPCh. 18 - Prob. 18.101SPCh. 18 - Prob. 18.102SPCh. 18 - Prob. 18.103SPCh. 18 - Prob. 18.104SPCh. 18 - Prob. 18.105SPCh. 18 - Prob. 18.106SPCh. 18 - Prob. 18.107SPCh. 18 - Prob. 18.108SPCh. 18 - 18.109 The boiling point of diethyl ether is...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY