Applied Statics and Strength of Materials (6th Edition)
6th Edition
ISBN: 9780133840544
Author: George F. Limbrunner, Craig D'Allaird, Leonard Spiegel
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 18.38SP
A structural steel column is 30 ft long and must support an axial compressive load of 20 kips. Using Euler’s formula and a factor of safety of 2.0, select the lightest wide-flange section. Assume that the column is pin-connected at each end. Check the applicability of Euler’s formula.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
.A 5-mm thick mild steel plate is used to form a hollow column of 60 mm outside diameter. The column length is 1.2 m. Calculate the crippling load using Johnson’s Parabolic formula. Take modulus of elasticity and yield strength as 206 GPa and 330 MPa, respectively. Assume one end is hinged and the other end fixed.218212 N176745 N930094 N263252 N
10-mm-diameter rod of 3003-H14 aluminium alloy is subjected to a 6-kN tensile
load. Calculate the resulting rod diameter. Calculate the diameter if this rod is
subjected to a 6-kN compressive load, given that the elastic modulus =70 GPa and
poisson ratio=0.33
A 5 ft column is made from 2024-T4 Aluminum. Column has a square cross section of 2 in x 2 in.
Both ends of the column are pinned. Calculate the critical load (Pcr).
Note: I am having trouble understanding what the Module of Elasticity is for 2024-T4 Aluminum.
Chapter 18 Solutions
Applied Statics and Strength of Materials (6th Edition)
Ch. 18 - Calculate the Euler buckling load for an axially...Ch. 18 - Calculate the Euler buckling load for a...Ch. 18 - A pin-connected axially loaded compression member...Ch. 18 - Prob. 18.4PCh. 18 - Plot a curve showing the relationship of feversus...Ch. 18 - A W1222 structural steel wide-flange section is...Ch. 18 - Prob. 18.7PCh. 18 - Calculate the allowable axial compressive load for...Ch. 18 - A W20059 structural steel wide-flange section is...Ch. 18 - Use Euler’s formula and a factor of safety of 2.5...
Ch. 18 - For Problems 18.11 through 18.17, unless otherwise...Ch. 18 - For Problems 18.11 through 18.17, unless otherwise...Ch. 18 - For Problems 18.11 through 18.17, unless otherwise...Ch. 18 - For Problems 18.11 through 18.17, unless otherwise...Ch. 18 - For Problems 18.11 through 18.17, unless otherwise...Ch. 18 - For Problems 18.11 through 18.17, unless otherwise...Ch. 18 - Prob. 18.17PCh. 18 - For Problems 18.18 through 18.21, use the...Ch. 18 - For Problems 18.18 through 18.21, use the...Ch. 18 - For Problems 18.18 through 18.21, use the...Ch. 18 - For Problems 18.18 through 18.21, use the...Ch. 18 - For Problems 18.22 through 18.26, assume normal...Ch. 18 - For Problems 18.22 through 18.26, assume normal...Ch. 18 - For Problems 18.22 through 18.26 assume normal...Ch. 18 - For Problems 18.22 through 18.26, assume normal...Ch. 18 - For Problems 18.22 through 18.26, assume normal...Ch. 18 - For the following computer problems, any...Ch. 18 - For the following computer problems, any...Ch. 18 - Calculate the Euler buckling load for an axially...Ch. 18 - 18.32 Calculate the Euler buckling load for an...Ch. 18 - 18.33 A structural steel shape of ASTM A992 steel...Ch. 18 - Calculate the Euler buckling load for a...Ch. 18 - 18.35 Rework Problem 18.34 assuming that the...Ch. 18 - 18.36 A built-up steel column is made by welding a...Ch. 18 - A 2-in-diameter standard-weight steel pipe is used...Ch. 18 - A structural steel column is 30 ft long and must...Ch. 18 - 18.39 Compute the allowable axial compressive load...Ch. 18 - 18.40 Determine the allowable axial compressive...Ch. 18 - 18.41 Using the AISC column approach, compute the...Ch. 18 - Using the AISC column equations, select the...Ch. 18 - Select the lightest extrastrong steel pipe section...Ch. 18 - 18.44 Compute the required diameter of a steel...Ch. 18 - 18.45 A 19-mm-diameter steel rod is 350 mm in...Ch. 18 - 18.46 A pin-connected linkage bar is 16 in. long...Ch. 18 - Prob. 18.47SPCh. 18 - Prob. 18.48SPCh. 18 - Prob. 18.49SPCh. 18 - Prob. 18.50SPCh. 18 - Prob. 18.51SP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A hallow cylindrical steel column with an outer diameter of 200 mm and an inner diameter of 180 mm is subjected to a compressive load of 200 kN. The yield strength of the steel is 250 MPa. Calculate the factor of safety for the column using the maximum normal stress theory.arrow_forwardBig and clear handwriting with the drawing, please. Make sure calculations and answers are accurate and please don't copy any online answers. THANK YOUarrow_forwardExample 2.20 1.5 m 5 m 1.5 m 10 kN ": ;. A concrete structure is subjected to a 10 kN downward load. Determine the load on the columns. ĮskN skN M-5* 1-5 = 7.5*. m 1.5m skN 7,5 kN. m SKE110 INTRODUCTION TO STRUCTURES 32arrow_forward
- a steel column that has a diameter of 50mm and 32m long is surrounded by an iron shell that is 5mm thick. what compressive load will shorten the combined system a total of 0.8mm. for steel E=200 GPa. For iron, E=100 GPaarrow_forwardA solid circular column (one end is fixed, the other end is free) is made from an alloy with a Young's Modulus (E) = 73 GPA. The length of the column is 740 mm. Calculate the minimum acceptable diameter in millimeters that will prevent buckling if the applied load is 97 kN.arrow_forwardPlease show the solution clearly, thank youarrow_forward
- (c) A solid round bar 60mm in diameter and 2.5m long is used as a strut. One end of the strut is fixed, while its other end is hinged. Determine the safe compressive load for this strut, using Euler's formula. Assume E-200 GN/m² and factor of safety =3. What EL Sarrow_forwardPlease show the formula used and free body diagram A steel bar 50 mm in diameter and 2 m long is surrounded by a shell of a cast iron 5 mm thick. Compute the load that will compress the combined bar a total of 0.8 mm in the length of 2 m. For steel, E = 200 GPa, and for cast iron, E = 100 GPa.arrow_forwardA 900 N axial load (y direction) is applied to the column having 2 m length. The column is made of steel and support details are given below. • Specify the buckling plane (does column buckle in x-y or y-z plane)? • Which dimension of the column should be increased to support the applied load? Determine the amount of improvement/increase? Esteel=200GPA (Hint : Be careful about the support conditions (effective lengths) for different planes) 15mm 15mm front view top view Jide viewarrow_forward
- QUESTION 3 A 300mm x 100mm channel section is used as a short vertical column. The column is to carry a vertical compressive load of 500kN acting on the XX axis at a distance of 25mm from the centroid of the section in the direction of the web. Make a clear sketch indicating all important and relevant information. Calculate the greatest stress induced in the column section, indicating Tensile or Compressive.arrow_forwardThe following figure shows the critical position of a crane that supports 2.5 Tons of load by means of a chain. You are delegated the responsibility of building a crane with similar geometric characteristics and load capacity. The diagram of free body of the crane arm can be redrawn as follows. (check the attached image "fbd") Assuming that the crane arm will be made of steel with yield stress sigmaY =220 MPa and that you must consider a safety factor of F.S.=1.5, propose a profile from the following catalog for the manufacture of the crane arm. Ignore the effects of shear forces on this element. On the other hand, it is very important that you consider the effects of axial loads. Commercial profiles for arm construction. (Check image "profiles")arrow_forwardA column has a rectangular cross -section of 10mm* 20mm and a length of 1m. The slenderness ratio of the column is close.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Column buckling; Author: Amber Book;https://www.youtube.com/watch?v=AvvaCi_Nn94;License: Standard Youtube License