
Which of the following reactions has a decrease in entropy
a.
b.
c.
d.

(a)
Interpretation:
Whether the reaction given below represents a decrease in entropy in the forward direction should be determined.
Concept introduction:
For phase transition such as solid to gas or liquid to gas the entropy change is positive in the direction that leads to more randomness. The gases are associated with the highest degree of randomness as they have molecules far apart. The least randomness is found in a solid-state that has a closely packed structure of atoms. Liquids have randomness intermediate to its solid-gas counterparts.
Mathematically, when randomness increases, this physically means that
Answer to Problem 18.1P
No,
Explanation of Solution
Given information:
The reaction is given as follows:
The reactant is dry ice that is in solid sate while the product represents gaseous

(b)
Interpretation:
Whether the reaction given below represents a decrease in entropy in the forward direction should be determined.
Concept introduction:
For phase transition such as solid to gas or liquid to gas the entropy change is positive in the direction that leads to more randomness. The gases are associated with the highest degree of randomness as they have molecules far apart. The least randomness is found in a solid-state that has a closely packed structure of atoms. Liquids have randomness intermediate to its solid-gas counterparts.
Mathematically, when randomness increases, this physically means that
Answer to Problem 18.1P
No,
Explanation of Solution
Given information:
The reaction is given as follows:
Here the phase transition does not occur however the number of atoms is more in the product side so there is more randomness in the product side so

(c)
Interpretation:
Whether the reaction given below represents a decrease in entropy in the forward direction should be determined.
Concept introduction:
For phase transition such as solid to gas or liquid to gas the entropy change is positive in the direction that leads to more randomness. The gases are associated with the highest degree of randomness as they have molecules far apart. The least randomness is found in a solid-state that has a closely packed structure of atoms. Liquids have randomness intermediate to its solid-gas counterparts.
Mathematically, when randomness increases this physically means that
Answer to Problem 18.1P
No,
Explanation of Solution
Given information:
The reaction is given as follows:
It can be observed that the reactant includes only they solid

(c)
Interpretation:
Whether the reaction given below represents a decrease in entropy in the forward direction should be determined.
Concept introduction:
Dissolution is phenomenon where the ionic lattice is disrupted and the ion gets solvated. Usually such solvation results in increases in randomness and thus,
Answer to Problem 18.1P
Yes,
Explanation of Solution
Given information:
The reaction is given as follows:
It can be observed that reactants include aqueous ions that are hydrated and are in a more disordered state the solid
Want to see more full solutions like this?
Chapter 18 Solutions
CHEMISTRY-TEXT
- 3. Use Kapustinskii's equation and data from Table 4.10 in your textbook to calculate lattice energies of Cu(OH)2 and CuCO3 (4 points)arrow_forward2. Copper (II) oxide crystalizes in monoclinic unit cell (included below; blue spheres 2+ represent Cu²+, red - O²-). Use Kapustinski's equation (4.5) to calculate lattice energy for CuO. You will need some data from Resource section of your textbook (p.901). (4 points) CuOarrow_forwardWhat is the IUPAC name of the following compound? OH (2S, 4R)-4-chloropentan-2-ol O (2R, 4R)-4-chloropentan-2-ol O (2R, 4S)-4-chloropentan-2-ol O(2S, 4S)-4-chloropentan-2-olarrow_forward
- Use the reaction coordinate diagram to answer the below questions. Type your answers into the answer box for each question. (Watch your spelling) Energy A B C D Reaction coordinate E A) Is the reaction step going from D to F endothermic or exothermic? A F G B) Does point D represent a reactant, product, intermediate or transition state? A/ C) Which step (step 1 or step 2) is the rate determining step? Aarrow_forward1. Using radii from Resource section 1 (p.901) and Born-Lande equation, calculate the lattice energy for PbS, which crystallizes in the NaCl structure. Then, use the Born-Haber cycle to obtain the value of lattice energy for PbS. You will need the following data following data: AH Pb(g) = 196 kJ/mol; AHƒ PbS = −98 kJ/mol; electron affinities for S(g)→S¯(g) is -201 kJ/mol; S¯(g) (g) is 640kJ/mol. Ionization energies for Pb are listed in Resource section 2, p.903. Remember that enthalpies of formation are calculated beginning with the elements in their standard states (S8 for sulfur). The formation of S2, AHF: S2 (g) = 535 kJ/mol. Compare the two values, and explain the difference. (8 points)arrow_forwardIn the answer box, type the number of maximum stereoisomers possible for the following compound. A H H COH OH = H C Br H.C OH CHarrow_forward
- 7. Magnesium is found in nature in the form of carbonates and sulfates. One of the major natural sources of zinc is zinc blende (ZnS). Use relevant concepts of acid-base theory to explain this combination of cations and anions in these minerals. (2 points)arrow_forward6. AlF3 is insoluble in liquid HF but dissolves if NaF is present. When BF3 is added to the solution, AlF3 precipitates. Write out chemical processes and explain them using the principles of Lewis acid-base theory. (6 points)arrow_forward5. Zinc oxide is amphoteric. Write out chemical reactions for dissolution of ZnO in HCl(aq) and in NaOH(aq). (3 points)arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





