Chemistry: The Molecular Nature of Matter and Change - Standalone book
Chemistry: The Molecular Nature of Matter and Change - Standalone book
7th Edition
ISBN: 9780073511177
Author: Martin Silberberg Dr., Patricia Amateis Professor
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 18, Problem 18.112P

(a)

Interpretation Introduction

Interpretation:

pH of 0.100 M sodium phenolate. solution has to be calculated.

Concept introduction:

An equilibrium constant (K) is the ratio of concentration of products and reactants raised to appropriate stoichiometric coefficient at equlibrium.

For the general base B,

  B(aq)+H2O(l)BH+(aq)+OH-(aq)

The relative strength of an acid and base in water can be also expressed quantitatively with an equilibrium constant as follows:

  Kb=[BH+][OH-][B]

An equilibrium constant (K) with subscript b indicate that it is an equilibrium constant of an base in water.

  Base - dissociation constants can be expressed as pKb values,pKb = -log Kb  and10 - pKb = K

Percent dissociation can be calculated by using following formula,

  Percent dissociated =  dissociationinitial×100

The Kb value is calculating by using following formula,

  Kw = Ka × Kb

(a)

Expert Solution
Check Mark

Explanation of Solution

Given,

Sodium phenolate ion is a base therefore it can accept the proton from the water. Sodium phenolate dissociates into sodium ions (Na+) and phenolate ions (PhO). Sodium ion is the conjugate acid of NaOH, so Na+ does not react with water. phenolate ions (PhO) is the conjugate base of PhOH, so it does react with a base-dissociation reaction. 

The balance equation is given below,

  C6H5O-(aq) +H2O(l)C6H5OH(aq) +   OH-(aq)

0.100 M sodium phenolate Solution.

Therefore,

ICE table:

  C6H5O-(aq) +H2O(l)C6H5OH(aq) +   OH-(aq)

Initial concentration0.100 M-00
Change -x + x+ x
At equilibrium

0.

0-x

 xx

The initial concentration is 0.100 M sodium phenolate.

  C6H5O-(aq) +H2O(l)C6H5OH(aq) +   OH-(aq)The value KbofC6H5Ois calculating by using following formula, Kw = Ka × KbKb = Kw KaKb = 1×1014 1.0×1010Kb = 1.0×104Kb =[C6H5OH][OH][C6H5O-]given,Kb =[C6H5OH][OH][C6H5O-]=1.0×104,letconsider,0.100x=0.100[C6H5OH][OH][C6H5O-]=1.0×104,x2(0.100)=1.0×104x2=1.0×105x=3.16×103M=[OH]

  x is small when compared to 0.100M, therefore,Percent dissociated =  dissociationinitial×1003.16×1030.100M×100=3.16Thedissociationvalueisveryless, andit is validKw=[OH-][H3O+][H3O+]=1.0×10-143.16×103[H3O+]=3.16×10-12Therefore,PH=-log(H3O+)PH=-log(3.16×10-12)PH=11.49

pH of 0.100 M sodium phenolate is 11.50.

(b)

Interpretation Introduction

Interpretation:

pH of  0.15 M methylammonium bromide (CH3NH3Br). solution has to be calculated.

Concept introduction:

An equilibrium constant (K) is the ratio of concentration of products and reactants raised to appropriate stoichiometric coefficient at equlibrium.

For the general base B,

  B(aq)+H2O(l)BH+(aq)+OH-(aq)

The relative strength of an acid and base in water can be also expressed quantitatively with an equilibrium constant as follows:

  Kb=[BH+][OH-][B]

An equilibrium constant (K) with subscript b indicate that it is an equilibrium constant of an base in water.

  Base - dissociation constants can be expressed as pKb values,pKb = -log Kb  and10 - pKb = K

Percent dissociation can be calculated by using following formula,

  Percent dissociated =  dissociationinitial×100

The Kb value is calculating by using following formula,

  Kw = Ka × Kb

(b)

Expert Solution
Check Mark

Explanation of Solution

Given,

Methylammonium bromide dissociates into quartnary ammonium ion (CH3NH3+) and bromide ions (Br). Bromide ion (Br) is the conjugate base of a strong acid so it will not influence the pH of the solution. Methylammonium ion is the conjugate acid of a weak base, so an acid-dissociation reaction determines the pH of the solution.

The balance equation is given below,

   CH3NH3+(aq) +H2O(l)CH3NH2(aq) +   H3O+(aq)

 0.15 M methylammonium bromide (CH3NH3Br) Solution.

Therefore,

ICE table:

 CH3NH3+(aq) +H2O(l)CH3NH2(aq) +   H3O+(aq)

Initial concentration0.15 M-00
Change -x + x+ x
At equilibrium0.15-x xx

The initial concentration is  0.15 M methylammonium bromide (CH3NH3Br).

    CH3NH3+(aq) +H2O(l)CH3NH2(aq) +   H3O+(aq)The value Kaof CH3NH3+is calculating by using following formula, Kw = Ka × KbKa = Kw KbKa = 1×1014 4.4×104Ka = 2.27×1011Ka =[CH3NH2][H3O+][ CH3NH3+]given,Ka =[CH3NH2][H3O+][ CH3NH3+]=2.27×1011,letconsider,0.150x=0.150[CH3NH2][H3O+][ CH3NH3+]=2.27×1011,x2(0.150)=2.27×1011x2=3.40×1012x=1.846×106M

pH of  0.15 M methylammonium bromide (CH3NH3Br) is 5.73.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Use the data below from an electron impact mass spectrum of a pure compound to deduce its structure. Draw your structure in the drawing window. Data selected from the NIST WebBook, https://webbook.nist.gov/chemistry/ m/z Relative intensity 31 0.5 30 26 29 22 28 100 27 33 26 23 15 4 • You do not have to consider stereochemistry. You do not have to explicitly draw H atoms. • In cases where there is more than one answer, just draw one. 妊 n ? Previous Next
for this question. Write the molecular formula for a compound with the possible elements C, H, N and O that exhibits a molecular ion at M+ = 98.1106. Exact Masses of the Most Abundant Isotope of Selected Elements Isotope Natural abundance (%) Exact mass 1H 99.985 1.008 12C 98.90 12.000 14N 99.63 14.003 160 99.76 15.995 Molecular formula (In the order CHNO, with no subscripts)
PLEASE READ!!! I DONT WANT EXAMPLES, I DONT WANT WORDS OR PARAGRAPHS!!! PLEASE I UNDERSTAND THE BASICS BUT THIS IS AN EXCEPTION THAT EVEN THE INTERNET CANT HELP!!!! THIS IS THE THIRD TIME I'VE SENT THOSE QUESTIONS SO PLEASE DONT RESEND THE SAME STUFF, ITS NOT HELPING ME!!! I ALSO ALREADY TRIED TO DRAW THE MECHANISM MYSELF, SO IF ITS RIGHT PLEASE TELL ME OR TELL ME WHAT I HAVE TO CHANGE!!! First image: I have to SHOW (DRAWING) the mechanism (with arows and structures of molecules) NOT WORDS PLEASE! of the reaction at the bottom. Also I have to show by mecanism why the reaction wouldn't work if the alcohol was primary Second image: I have to show the mechanism (IMAGE) (with arrows and structures of the molecules) NOT WORDS PLEASE !! for the reaction on the left, where the alcohol A is added fast in one portion HOMEWORK, NOT EXAM!! ALL DETAILS ARE IN THE IMAGES PLEASE LOOK AT THE IMAGES, DONT LOOK AT THE AI GENERATED TEXT!!!

Chapter 18 Solutions

Chemistry: The Molecular Nature of Matter and Change - Standalone book

Ch. 18.3 - The left-hand scene in the margin represents the...Ch. 18.3 - The right-hand scene depicts an aqueous solution...Ch. 18.4 - The conjugate acid of ammonia is the weak acid ....Ch. 18.4 - Prob. 18.7BFPCh. 18.4 - Cyanic acid (HOCN) is an extremely acrid, unstable...Ch. 18.4 - Prob. 18.8BFPCh. 18.4 - Prob. 18.9AFPCh. 18.4 - Prob. 18.9BFPCh. 18.4 - Prob. 18.10AFPCh. 18.4 - Prob. 18.10BFPCh. 18.6 - Pyridine (C5H5N, see the space-filling model)...Ch. 18.6 - Prob. 18.11BFPCh. 18.6 - Prob. 18.12AFPCh. 18.6 - Prob. 18.12BFPCh. 18.7 - Write equations to predict whether solutions of...Ch. 18.7 - Write equations to predict whether solutions of...Ch. 18.7 - Determine whether solutions of the following salts...Ch. 18.7 - Prob. 18.14BFPCh. 18.9 - Prob. 18.15AFPCh. 18.9 - Prob. 18.15BFPCh. 18 - Prob. 18.1PCh. 18 - Prob. 18.2PCh. 18 - Prob. 18.3PCh. 18 - What do “strong” and “weak” mean for acids and...Ch. 18 - Prob. 18.5PCh. 18 - Prob. 18.6PCh. 18 - Prob. 18.7PCh. 18 - Which of the following are Arrhenius...Ch. 18 - Prob. 18.9PCh. 18 - Prob. 18.10PCh. 18 - Prob. 18.11PCh. 18 - Prob. 18.12PCh. 18 - Use Appendix C to rank the following in order of...Ch. 18 - Prob. 18.14PCh. 18 - Classify each as a strong or weak acid or...Ch. 18 - Prob. 18.16PCh. 18 - Prob. 18.17PCh. 18 - Prob. 18.18PCh. 18 - Prob. 18.19PCh. 18 - Prob. 18.20PCh. 18 - Prob. 18.21PCh. 18 - Which solution has the higher pH? Explain. A 0.1 M...Ch. 18 - (a) What is the pH of 0.0111 M NaOH? Is the...Ch. 18 - (a) What is the pH of 0.0333 M HNO3? Is the...Ch. 18 - Prob. 18.25PCh. 18 - (a) What is the pH of 7.52×10−4 M CsOH? Is the...Ch. 18 - Prob. 18.27PCh. 18 - Prob. 18.28PCh. 18 - Prob. 18.29PCh. 18 - Prob. 18.30PCh. 18 - Prob. 18.31PCh. 18 - Prob. 18.32PCh. 18 - Prob. 18.33PCh. 18 - Prob. 18.34PCh. 18 - The two molecular scenes shown depict the relative...Ch. 18 - Prob. 18.36PCh. 18 - Prob. 18.37PCh. 18 - Prob. 18.38PCh. 18 - A Brønstcd-Lowry acid-base reaction proceeds in...Ch. 18 - Prob. 18.40PCh. 18 - Prob. 18.41PCh. 18 - Prob. 18.42PCh. 18 - Give the formula of the conjugate...Ch. 18 - Give the formula of the conjugate base: Ch. 18 - Give the formula of the conjugate...Ch. 18 - Prob. 18.46PCh. 18 - Prob. 18.47PCh. 18 - In each equation, label the acids, bases, and...Ch. 18 - Prob. 18.49PCh. 18 - Prob. 18.50PCh. 18 - Prob. 18.51PCh. 18 - Prob. 18.52PCh. 18 - Prob. 18.53PCh. 18 - The following aqueous species constitute two...Ch. 18 - Prob. 18.55PCh. 18 - Use Figure 18.8 to determine whether Kc > 1...Ch. 18 - Prob. 18.57PCh. 18 - Prob. 18.58PCh. 18 - Prob. 18.59PCh. 18 - Prob. 18.60PCh. 18 - Prob. 18.61PCh. 18 - Prob. 18.62PCh. 18 - Prob. 18.63PCh. 18 - Prob. 18.64PCh. 18 - Prob. 18.65PCh. 18 - Prob. 18.66PCh. 18 - Prob. 18.67PCh. 18 - Prob. 18.68PCh. 18 - Hypochlorous acid, HClO, has a pKa of 7.54. What...Ch. 18 - Prob. 18.70PCh. 18 - Prob. 18.71PCh. 18 - Prob. 18.72PCh. 18 - Prob. 18.73PCh. 18 - Prob. 18.74PCh. 18 - Prob. 18.75PCh. 18 - Prob. 18.76PCh. 18 - Prob. 18.77PCh. 18 - Prob. 18.78PCh. 18 - Prob. 18.79PCh. 18 - Prob. 18.80PCh. 18 - Prob. 18.81PCh. 18 - Prob. 18.82PCh. 18 - Formic acid, HCOOH, the simplest carboxylic acid,...Ch. 18 - Across a period, how does the electronegativity of...Ch. 18 - How does the atomic size of a nonmetal affect the...Ch. 18 - Prob. 18.86PCh. 18 - Prob. 18.87PCh. 18 - Prob. 18.88PCh. 18 - Prob. 18.89PCh. 18 - Choose the stronger acid in each of the following...Ch. 18 - Prob. 18.91PCh. 18 - Prob. 18.92PCh. 18 - Prob. 18.93PCh. 18 - Use Appendix C to choose the solution with the...Ch. 18 - Prob. 18.95PCh. 18 - Prob. 18.96PCh. 18 - Prob. 18.97PCh. 18 - Prob. 18.98PCh. 18 - Prob. 18.99PCh. 18 - Prob. 18.100PCh. 18 - Prob. 18.101PCh. 18 - Prob. 18.102PCh. 18 - Prob. 18.103PCh. 18 - Prob. 18.104PCh. 18 - Prob. 18.105PCh. 18 - Prob. 18.106PCh. 18 - Prob. 18.107PCh. 18 - Prob. 18.108PCh. 18 - What is the pKb of ? What is the pKa of the...Ch. 18 - Prob. 18.110PCh. 18 - Prob. 18.111PCh. 18 - Prob. 18.112PCh. 18 - Prob. 18.113PCh. 18 - Prob. 18.114PCh. 18 - Prob. 18.115PCh. 18 - Prob. 18.116PCh. 18 - Prob. 18.117PCh. 18 - Prob. 18.118PCh. 18 - Prob. 18.119PCh. 18 - Prob. 18.120PCh. 18 - Prob. 18.121PCh. 18 - Prob. 18.122PCh. 18 - Prob. 18.123PCh. 18 - Prob. 18.124PCh. 18 - Explain with equations and calculations, when...Ch. 18 - Prob. 18.126PCh. 18 - Prob. 18.127PCh. 18 - Rank the following salts in order of increasing pH...Ch. 18 - Rank the following salts in order of decreasing pH...Ch. 18 - Prob. 18.130PCh. 18 - Prob. 18.131PCh. 18 - Prob. 18.132PCh. 18 - Prob. 18.133PCh. 18 - Prob. 18.134PCh. 18 - Prob. 18.135PCh. 18 - Prob. 18.136PCh. 18 - Prob. 18.137PCh. 18 - Prob. 18.138PCh. 18 - Prob. 18.139PCh. 18 - Which are Lewis acids and which are Lewis...Ch. 18 - Prob. 18.141PCh. 18 - Prob. 18.142PCh. 18 - Prob. 18.143PCh. 18 - Prob. 18.144PCh. 18 - Classify the following as Arrhenius,...Ch. 18 - Chloral (Cl3C—CH=O) forms a monohydrate, chloral...Ch. 18 - Prob. 18.147PCh. 18 - Prob. 18.148PCh. 18 - Prob. 18.149PCh. 18 - Prob. 18.150PCh. 18 - Prob. 18.151PCh. 18 - Prob. 18.152PCh. 18 - Prob. 18.153PCh. 18 - Prob. 18.154PCh. 18 - The strength of an acid or base is related to its...Ch. 18 - Prob. 18.156PCh. 18 - Three beakers contain 100. mL of 0.10 M HCl,...Ch. 18 - Prob. 18.158PCh. 18 - Prob. 18.159PCh. 18 - Prob. 18.160PCh. 18 - Prob. 18.161PCh. 18 - Prob. 18.162PCh. 18 - What is the pH of a vinegar with 5.0% (w/v) acetic...Ch. 18 - Prob. 18.164PCh. 18 - Prob. 18.165PCh. 18 - Prob. 18.166PCh. 18 - Prob. 18.167PCh. 18 - Prob. 18.168PCh. 18 - Prob. 18.169PCh. 18 - Prob. 18.170PCh. 18 - Prob. 18.171PCh. 18 - Prob. 18.172PCh. 18 - Prob. 18.173PCh. 18 - Prob. 18.174PCh. 18 - Prob. 18.175PCh. 18 - Prob. 18.176PCh. 18 - Prob. 18.177PCh. 18 - Prob. 18.178PCh. 18 - Prob. 18.179PCh. 18 - Prob. 18.180PCh. 18 - Prob. 18.181PCh. 18 - Prob. 18.182PCh. 18 - Prob. 18.183PCh. 18 - Prob. 18.184PCh. 18 - Drinking water is often disinfected with Cl2,...Ch. 18 - Prob. 18.186P
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Acid-Base Titration | Acids, Bases & Alkalis | Chemistry | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=yFqx6_Y6c2M;License: Standard YouTube License, CC-BY