Another derivative combination Let F = ( f, g, h ) and let u be a differentiable scalar-valued function. a. Take the dot product of F and the del operator; then apply the result to u to show that ( F ⋅ ∇ ) u = ( f ∂ ∂ x + g ∂ ∂ y + h ∂ ∂ z ) u = f ∂ u ∂ x + g ∂ u ∂ y + h ∂ u ∂ z . b. Evaluate ( F · ▿) ( xy 2 z 3 ) at (1, 1 , 1), where F = (1 , 1, 1).
Another derivative combination Let F = ( f, g, h ) and let u be a differentiable scalar-valued function. a. Take the dot product of F and the del operator; then apply the result to u to show that ( F ⋅ ∇ ) u = ( f ∂ ∂ x + g ∂ ∂ y + h ∂ ∂ z ) u = f ∂ u ∂ x + g ∂ u ∂ y + h ∂ u ∂ z . b. Evaluate ( F · ▿) ( xy 2 z 3 ) at (1, 1 , 1), where F = (1 , 1, 1).
Another derivative combination Let F = (f, g, h) and let u be a differentiable scalar-valued function.
a. Take the dot product of F and the del operator; then apply the result to u to show that
(
F
⋅
∇
)
u
=
(
f
∂
∂
x
+
g
∂
∂
y
+
h
∂
∂
z
)
u
=
f
∂
u
∂
x
+
g
∂
u
∂
y
+
h
∂
u
∂
z
.
b. Evaluate (F·▿)(xy2z3) at (1, 1, 1), where F = (1, 1, 1).
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
Let f be a function whose graph consists of 5 line segments and a semicircle as shown in the figure below.
Let g(x) = √ƒƒ(t) dt .
0
3
2
-2
2
4
5
6
7
8
9
10
11
12
13
14
15
1. g(0) =
2. g(2) =
3. g(4) =
4. g(6) =
5. g'(3) =
6. g'(13)=
The expression 3 | (3+1/+1)
of the following integrals?
A
Ов
E
+
+
+ +
18
3+1+1
3++1
3++1
(A) √2×14 dx
x+1
(C) 1½-½√ √ ² ( 14 ) d x
(B) √31dx
(D) So 3+x
-dx
is a Riemann sum approximation of which
5
(E) 1½√√3dx
2x+1
2. Suppose the population of Wakanda t years after 2000 is given by the equation
f(t) = 45000(1.006). If this trend continues, in what year will the population reach 50,000
people? Show all your work, round your answer to two decimal places, and include units. (4
points)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY