Stokes’ Theorem for evaluating surface integrals Evaluate the line integral in Stakes’ Theorem to determine the value of the surface integral ∬ S ( ∇ × F ) ⋅ n d S . Assume that n points in an upward direction. 17. F = 〈 x , y , z 〉; S is the upper half of the ellipsoid x 2 /4 + y 2 /9 + z 2 = 1.
Stokes’ Theorem for evaluating surface integrals Evaluate the line integral in Stakes’ Theorem to determine the value of the surface integral ∬ S ( ∇ × F ) ⋅ n d S . Assume that n points in an upward direction. 17. F = 〈 x , y , z 〉; S is the upper half of the ellipsoid x 2 /4 + y 2 /9 + z 2 = 1.
Stokes’ Theorem for evaluating surface integralsEvaluate the line integral in Stakes’ Theorem to determine the value of the surface integral
∬
S
(
∇
×
F
)
⋅
n
d
S
. Assume thatnpoints in an upward direction.
17.F = 〈x, y, z〉; S is the upper half of the ellipsoid x2/4 + y2/9 + z2 = 1.
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
Let f be a function whose graph consists of 5 line segments and a semicircle as shown in the figure below.
Let g(x) = √ƒƒ(t) dt .
0
3
2
-2
2
4
5
6
7
8
9
10
11
12
13
14
15
1. g(0) =
2. g(2) =
3. g(4) =
4. g(6) =
5. g'(3) =
6. g'(13)=
The expression 3 | (3+1/+1)
of the following integrals?
A
Ов
E
+
+
+ +
18
3+1+1
3++1
3++1
(A) √2×14 dx
x+1
(C) 1½-½√ √ ² ( 14 ) d x
(B) √31dx
(D) So 3+x
-dx
is a Riemann sum approximation of which
5
(E) 1½√√3dx
2x+1
2. Suppose the population of Wakanda t years after 2000 is given by the equation
f(t) = 45000(1.006). If this trend continues, in what year will the population reach 50,000
people? Show all your work, round your answer to two decimal places, and include units. (4
points)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.