Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17.5, Problem 17.4CE
To determine
Whether the modelling of A of sound from an earbud as sand from a sandblaster good.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1.You hook up a stereo system. When you test the system, you notice that in one corner of the room, the sounds seem dull. In another area, the sounds seem excessively loud. Describe how the sound moving about the room could result in these effects.
Mr. Daryl is giving an announcement, and he can be heard up to 30m. If you are standing 35m east and 25m south of Mr. Daryl, will you be able to hear his announcement?
a. Yes, because I am only about 18.02 meters away from him.
b. No, because I am about 43.01 meters away from him.
C. Yes, because I am only about 25 meters away from him.
d. No, because I am about 35 meters away from him.
The Weber-Fechner law describes how human beings perceive differences. Suppose, for example, that a person first hears a tone with a frequency of 400 hertz (cycles per second). He is then tested with higher tones until he can hear the difference. The ratio between these values describes how well this person can hear differences. a. Suppose the next tone he can distinguish has a frequency of 404 hertz. What is the ratio? b. According to the Weber-Fechner law, the next higher tone will be greater than 404 by the same ratio. Find this tone. c. Write the discrete-time dynamical system for this person. d. Suppose the experiment is repeated on a musician, and she manages to distinguish 400.5 hertz from 400 hertz. What is the fifth tone she can distinguish?
Chapter 17 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 17.2 - As weve seen before, terms used in physics often...Ch. 17.2 - A graph of a pulses profile and a...Ch. 17.3 - Prob. 17.3CECh. 17.5 - Prob. 17.4CECh. 17.5 - The bulk modulus of water is 2.2 109 Pa (Table...Ch. 17.6 - Prob. 17.6CECh. 17 - A dog swims from one end of a pool to the opposite...Ch. 17 - Prob. 2PQCh. 17 - Prob. 3PQCh. 17 - Prob. 4PQ
Ch. 17 - Prob. 5PQCh. 17 - Prob. 6PQCh. 17 - Prob. 7PQCh. 17 - Prob. 8PQCh. 17 - A sinusoidal traveling wave is generated on a...Ch. 17 - Prob. 10PQCh. 17 - Prob. 11PQCh. 17 - The equation of a harmonic wave propagating along...Ch. 17 - Prob. 13PQCh. 17 - Prob. 14PQCh. 17 - Prob. 15PQCh. 17 - A harmonic transverse wave function is given by...Ch. 17 - Prob. 17PQCh. 17 - Prob. 18PQCh. 17 - Prob. 19PQCh. 17 - Prob. 20PQCh. 17 - Prob. 21PQCh. 17 - Prob. 22PQCh. 17 - A wave on a string with linear mass density 5.00 ...Ch. 17 - A traveling wave on a thin wire is given by the...Ch. 17 - Prob. 25PQCh. 17 - Prob. 26PQCh. 17 - Prob. 27PQCh. 17 - Prob. 28PQCh. 17 - Prob. 29PQCh. 17 - Prob. 30PQCh. 17 - Prob. 31PQCh. 17 - Problems 32 and 33 are paired. N Seismic waves...Ch. 17 - Prob. 33PQCh. 17 - Prob. 34PQCh. 17 - Prob. 35PQCh. 17 - Prob. 36PQCh. 17 - Prob. 37PQCh. 17 - Prob. 38PQCh. 17 - Prob. 39PQCh. 17 - Prob. 40PQCh. 17 - Prob. 41PQCh. 17 - Prob. 42PQCh. 17 - Prob. 43PQCh. 17 - Prob. 44PQCh. 17 - Prob. 45PQCh. 17 - What is the sound level of a sound wave with...Ch. 17 - Prob. 47PQCh. 17 - The speaker system at an open-air rock concert...Ch. 17 - Prob. 49PQCh. 17 - Prob. 50PQCh. 17 - Prob. 51PQCh. 17 - Prob. 52PQCh. 17 - Prob. 53PQCh. 17 - Using the concept of diffraction, discuss how the...Ch. 17 - Prob. 55PQCh. 17 - Prob. 56PQCh. 17 - An ambulance traveling eastbound at 140.0 km/h...Ch. 17 - Prob. 58PQCh. 17 - Prob. 59PQCh. 17 - Prob. 60PQCh. 17 - Prob. 61PQCh. 17 - In Problem 61, a. Sketch an image of the wave...Ch. 17 - Prob. 63PQCh. 17 - Prob. 64PQCh. 17 - Prob. 65PQCh. 17 - Prob. 66PQCh. 17 - Prob. 67PQCh. 17 - Prob. 68PQCh. 17 - Prob. 69PQCh. 17 - Prob. 70PQCh. 17 - A block of mass m = 5.00 kg is suspended from a...Ch. 17 - A The equation of a harmonic wave propagating...Ch. 17 - Prob. 73PQCh. 17 - Prob. 74PQCh. 17 - Prob. 75PQCh. 17 - Prob. 76PQCh. 17 - A siren emits a sound of frequency 1.44103 Hz when...Ch. 17 - Female Aedes aegypti mosquitoes emit a buzz at...Ch. 17 - A careless child accidentally drops a tuning fork...Ch. 17 - Prob. 80PQCh. 17 - A wire with a tapered cross-sectional area is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) If a submarine’s sonar can measure echo times with a precision of 0.00100 s, what is the smallest difference in distances it can detect? (Assume that the submarine is in the ocean, not in fresh water.) (b) Discuss the limits this time resolution imposes on the ability of the sonar system to detect the size and Shape of the object creating the echo.arrow_forwardLoudspeakers can produce intense sounds with surprisingly small energy input in spite of their low efficiencies. Calculate the power input needed to produce a 90.0-dB sound intensity level for a 12.0-cm-diameter speaker that has an efficiency of 1.00% . (This value is the sound intensity level right at the speaker.)arrow_forwardYour ear is capable of differentiating sounds that arrive at each ear just 0.34 ms apart, which is useful in determining where low frequency sound is originating from. (a) Suppose a low-frequency sound source is placed to the right of a person, whose ears are approximately 18 cm apart, and the speed of sound generated is 340 m/s. How long is the interval between when the sound arrives at the right ear and the sound arrives at the left ear? (b) Assume the same person was scuba diving and a low-frequency sound source was to the right of the scuba diver. How long is the interval between when the sound arrives at the right ear and the sound arrives at the left ear, if the speed of sound in water is 1500 m/s? (c) What is significant about the time interval of the two situations?arrow_forward
- (a) Ear trumpets were never very common, but they did aid people with hearing losses by gathering sound over a large area and concentrating it on the smaller area of the eardrum. What decibel increase does an ear trumpet produce it its sound gathering area is 900 cm2 and the area of the eardrum is 0.500 cm2, but the trumpet only has an eficiency of 5.00% in transmitting the sound to the eardrum? (b) Comment on the usefulness of the decibel increase found in part (a).arrow_forward(a) If a submarine’s sonar can measure echo times with a precision of 0.0100 s, what is the smallest difference in distances it can detect? (Assume that the submarine is in the ocean, not in fresh water.) (b) Discuss the limits this time resolution imposes on the ability of the sonar system to detect the size and shape of the object creating the echo.arrow_forwardMany of the topics discussed in this chapter are useful beyond the topics of mechanical waves. It is hard to conceive of a mechanical wave with sharp corners, but you could encounter such a wave form in your digital electronics class, as shown below. This could be a signal from a device known as an analog to digital converter, in which a continuous voltage signal is converted into a discrete signal or a digital recording of sound. What is the result of the superposition of the two signals?arrow_forward
- A riverside warehouse has several small doors facing the river. Two of these doors are open as shown in Figure P27.17. The walls of the warehouse are lined with sound-absorbing material. Two people stand at a distance L = 150 in from the wall with the open doors. Person A stands along a line passing through the midpoint between the open doors, and person B stands a distance y = 20 m to his side. A boat o the river sounds its horn. To person A, the sound is loud and clear. To person B, the sound is barely audible. The principal wavelength of the sound waves is 5.00 m. Assuming person B is at the position of the first minimum, determine the distance d between the doors, center to center.arrow_forward(a) What are the loudnesses in phons of sounds having frequencies of 200, 1000, 5000, and 10,000 Hz. if they are all at the same 60.0dB sound intensity level? (b) If may are all at 110 dB? (c) If they are all at 20.0 dB?arrow_forwardYou are working for a plumber who is laying very long sections of copper pipe for a large building project. He spends a lot of time measuring the lengths of the sections with a measuring tape. You suggest a faster way to measure the length. You know that the speed of a one-dimensional compressional wave traveling along a copper pipe is 3.56 km/s. You suggest that a worker give a sharp hammer blow at one end of the pipe. Using an oscilloscope app on your smartphone, you will measure the time interval t between the arrival of the two sound waves due to the blow: one through the 20.0C air and the other through the pipe. (a) To measure the length, you must derive an equation that relates the length L of the pipe numerically to the time interval t. (b) You measure a time interval of t = 127 ms between the arrivals of the pulses and, from this value, determine the length of the pipe. (c) Your smartphone app claims an accuracy of 1.0% in measuring time intervals. So you calculate by how many centimeters your calculation of the length might be in error.arrow_forward
- In Example 18.1, we investigated an oscillator at 1.3kHz driving two identical side-by-side speakers. We found that a listener at point O hears sound with maximum intensity, whereas a listener at point P hears a minimum. What is the intensity at P? (a) less than hut dose to the intensity at O (b) half the intensity at O (c) very low but not zero (d) zero (e) indeterminatearrow_forwardA tuning fork generates sound waves with a frequency of 246 Hz. The waves travel in opposite directions along a hallway, are reflected by end walls, and return. The hallway is 47.0 m long and the tuning fork is located 14.0 m from one end. What is the phase difference between the reflected waves when they meet at the tuning fork? The speed of sound in air is 343 m/s.arrow_forwardEver since seeing Figure 16.22 in the previous chapter, you have been fascinated with the hearing response in humans. You have set up an apparatus that allows you to determine your own threshold of hearing as a function of frequency. After performing the experiment and recording the results, you graph the results, which look like Figure P17.22. You are intrigued by the two dips in the curve at the right-hand side of the graph. You measure carefully and find that the minimum values of these dips occur at 3 800 Hz and 11 500 Hz. Performing some online research, you discover that the outer canal of the human ear can be modeled as an air column open at the outer end and closed at the inner end by the eardrum. You use this information to determine the length of the outer canal in your car. Figure P17.22arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning