Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 6PQ
(a)
To determine
Plot the particle’s vertical position versus time graph.
(b)
To determine
Plot the particle’s vertical position versus time graph.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A wave is modeled by the wave function:
y (x, t) = A sin [ 2π/0.1 m (x - 12 m/s*t)]
1. Find the wavelength, wave number, wave velocity, period and wave frequency.
2. Construct on the computer, in the same graph, the dependence of y (x, t) from x on t = 0 and t = 5 s and the amplitude is A= 1.3m
3. After constructing the graph, make the appropriate interpretations and comments from the result that you got graphically.
4. How much is the wave displaced during the time interval from t = 0 to t = 5 s? Does it match this with the graph results? Justify your answer. Is the material transported long wave displacement? If yes, how much material is transported over time interval from t = 0 to t = 5 s? Comment on your answer. We now consider two sound waves with different frequencies which have to the same amplitude. The wave functions of these waves are as follows:
y1 (t) = A sin (2πf1t)
y2 (t) = A sin (2πf2t)
5. Find the resultant wave function analytically.
6. Study how the resulting wave…
The wave y (x,t) = Asin (kx − wt + (lambda sign)) has an amplitude of 0.245 cm and a period of 85.2 ms. What is the maximum particle velocity? Answer in m / s.
A tuning fork is held a certain distance from your ears and struck. Your eardrums’ vibrations after t seconds are given by p = 3 sin 2t. When a second tuning fork is struck, the formula p = 2sin(2t + π) describes the effects of the sound on the eardrums’ vibrations. The total vibrations are given by p = 3 sin 2t + 2 sin(2t + π).
Solve, a. Simplify p to a single term containing the sine.
b. If the amplitude of p is zero, no sound is heard. Based on your equation in part (a), does this occur with the two tuning forks in this exercise? Explain your answer.
Chapter 17 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 17.2 - As weve seen before, terms used in physics often...Ch. 17.2 - A graph of a pulses profile and a...Ch. 17.3 - Prob. 17.3CECh. 17.5 - Prob. 17.4CECh. 17.5 - The bulk modulus of water is 2.2 109 Pa (Table...Ch. 17.6 - Prob. 17.6CECh. 17 - A dog swims from one end of a pool to the opposite...Ch. 17 - Prob. 2PQCh. 17 - Prob. 3PQCh. 17 - Prob. 4PQ
Ch. 17 - Prob. 5PQCh. 17 - Prob. 6PQCh. 17 - Prob. 7PQCh. 17 - Prob. 8PQCh. 17 - A sinusoidal traveling wave is generated on a...Ch. 17 - Prob. 10PQCh. 17 - Prob. 11PQCh. 17 - The equation of a harmonic wave propagating along...Ch. 17 - Prob. 13PQCh. 17 - Prob. 14PQCh. 17 - Prob. 15PQCh. 17 - A harmonic transverse wave function is given by...Ch. 17 - Prob. 17PQCh. 17 - Prob. 18PQCh. 17 - Prob. 19PQCh. 17 - Prob. 20PQCh. 17 - Prob. 21PQCh. 17 - Prob. 22PQCh. 17 - A wave on a string with linear mass density 5.00 ...Ch. 17 - A traveling wave on a thin wire is given by the...Ch. 17 - Prob. 25PQCh. 17 - Prob. 26PQCh. 17 - Prob. 27PQCh. 17 - Prob. 28PQCh. 17 - Prob. 29PQCh. 17 - Prob. 30PQCh. 17 - Prob. 31PQCh. 17 - Problems 32 and 33 are paired. N Seismic waves...Ch. 17 - Prob. 33PQCh. 17 - Prob. 34PQCh. 17 - Prob. 35PQCh. 17 - Prob. 36PQCh. 17 - Prob. 37PQCh. 17 - Prob. 38PQCh. 17 - Prob. 39PQCh. 17 - Prob. 40PQCh. 17 - Prob. 41PQCh. 17 - Prob. 42PQCh. 17 - Prob. 43PQCh. 17 - Prob. 44PQCh. 17 - Prob. 45PQCh. 17 - What is the sound level of a sound wave with...Ch. 17 - Prob. 47PQCh. 17 - The speaker system at an open-air rock concert...Ch. 17 - Prob. 49PQCh. 17 - Prob. 50PQCh. 17 - Prob. 51PQCh. 17 - Prob. 52PQCh. 17 - Prob. 53PQCh. 17 - Using the concept of diffraction, discuss how the...Ch. 17 - Prob. 55PQCh. 17 - Prob. 56PQCh. 17 - An ambulance traveling eastbound at 140.0 km/h...Ch. 17 - Prob. 58PQCh. 17 - Prob. 59PQCh. 17 - Prob. 60PQCh. 17 - Prob. 61PQCh. 17 - In Problem 61, a. Sketch an image of the wave...Ch. 17 - Prob. 63PQCh. 17 - Prob. 64PQCh. 17 - Prob. 65PQCh. 17 - Prob. 66PQCh. 17 - Prob. 67PQCh. 17 - Prob. 68PQCh. 17 - Prob. 69PQCh. 17 - Prob. 70PQCh. 17 - A block of mass m = 5.00 kg is suspended from a...Ch. 17 - A The equation of a harmonic wave propagating...Ch. 17 - Prob. 73PQCh. 17 - Prob. 74PQCh. 17 - Prob. 75PQCh. 17 - Prob. 76PQCh. 17 - A siren emits a sound of frequency 1.44103 Hz when...Ch. 17 - Female Aedes aegypti mosquitoes emit a buzz at...Ch. 17 - A careless child accidentally drops a tuning fork...Ch. 17 - Prob. 80PQCh. 17 - A wire with a tapered cross-sectional area is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A pulse moving along the x axis can be modeled as the wave function y(x,t)=4.00me( x+( 2.00m/s )t 1.00m)2 . (a)What are the direction and propagation speed of the pulse? (b) How far has the wave moved in 3.00 s? (c) Plot the pulse using a spreadsheet at time t=0.00 s and t=3.00 s to verify your answer in part (b).arrow_forwardA dog swims from one end of a pool to the opposite end. Is the dogs motion described as a wave? Explain.arrow_forwardThe displacement of the air molecules in sound wave is modeled with the wave function s(x,t)=5.00nmcos(91.54m1x3.14104s1t) . (a) What is the wave speed of the sound wave? (b) What is the maximum speed of the air molecules as they oscillate in simple harmonic motion? (c) What is the magnitude of the maximum acceleration of the air molecules as they oscillate in simple harmonic motion?arrow_forward
- A wave is modeled by the wave function: y (x, t) = A sin [ 2π/0.1 m (x - 12 m/s*t)] 1. Find the wavelength, wave number, wave velocity, period and wave frequency. 2. Construct on the computer, in the same graph, the dependence of y (x, t) from x on t = 0 and t = 5 s in case the value of amplitude A corresponds to the first letter of your name: letter E A. A=0.1 mB. A=0.15 mC. A=0.2 mÇ. A=0.25 mD. A=0.3 mDh. A=0.35 mE. A=0.4 mË. A=0.45 mF. A=0.5 m G. A=0.55 mGj. A=0.6 mH. A=0.65 mI. A=0.7 mJ. A=0.75 mK. A=0.8 mL. A=0.85 mLl. A=0.9 mM. A=0.95 m N. A=1.05 mNj. A= 1.1 mO. A=1.15 mP. A=1.2 mQ. A=1.25 mR. A=1.3 mRr. A=1.35 mS. A=1.4 mSh. A=1.45 m T. A=1.5 mTh. A=1.55 mU. A=1.6 mV. A=1.65 mX. A=1.7 mXh. A=1.75 mY. A=1.8 mZ. A=1.85 mZh. A=1.9 m 3. After constructing the graph, make the appropriate interpretations and comments from the result that you got graphically. 4. How much is the wave displaced during the time interval from t = 0 to t = 5 s? Does it match this with the graph results?…arrow_forwardIn the given wave function below, what is the position of the particle at x = 0.250 m at t = 0.300 s? y(x, t) = (0.500m) cos 27 O y = 0 and the particle is on its way downward. O y = 0 and the particle is on its way upward. O y = +0.500 m O y = -0.500 m. X 0.500m t 0.400.sarrow_forwardA history graph for a travelling wave pulse is shown below y(m) X=6m 0.2 0.1 t(s) 0 1 2 3 4 5 6 7 8 What is the particle velocity fort = 1 s? What is the particle velocity for t = 3 s? What is the particle velocity for t = 5 s? Is this wave pulse travelling to the left, the right, or can't tell?arrow_forward
- Can you solve and explain it plz . just describe itarrow_forwardPlease asaparrow_forwardA traveling wave of the form y1 = 0.01 sin[100π t – (10 π/3) x] m is reflected off a rigid surface located at x = 3 m. The reflected wave undergoes a phase change ε.a. Write down the form of the reflected wave and calculate the value of εb. Write down an expression for the resultant wave, and describe its motionc. At what instant is the resultant wave always zero?d. At what locations between x = 0 and x = 3 is the resultant wave always zero?arrow_forward
- Write the real and complex expression for a plane wave E2 propagating at an angle of 60° with respect to the z axis on the xz plane. The wavelength of is 1550 nm, and the speed is c = c/1.45.arrow_forwardThere is a sine wave described by a function y=5*sin (20*t+3.1415). What is its value when time is 3.3 seconds?arrow_forwardEx45: A simple harmonic progressive wave of amplitude 10 cm and frequency 1000 Hz is travelling with a velocity of 348 m/s. Find the displacement of a particle of a distance of 1.74 m from the origin after 1.001 seconds.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Wave Speed on a String - Tension Force, Intensity, Power, Amplitude, Frequency - Inverse Square Law; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=vEzftaDL7fM;License: Standard YouTube License, CC-BY
Vibrations of Stretched String; Author: PhysicsPlus;https://www.youtube.com/watch?v=BgINQpfqJ04;License: Standard Youtube License