
Concept explainers
(a)
Interpretation:
Atom or ion oxidized in reactions below has to be determined.
Concept Introduction:
Oxidation number is integer value allotted to every element. It is formal charge occupied by atom if all of its bonds are dissociated heterolytically. Below mentioned are rules to assign oxidation numbers to various elements.
1. Elements present in their free state have zero oxidation number.
2. Oxidation number of hydrogen is generally
3. Oxidation number of oxygen is
4. Metals have positive oxidation numbers.
5. Negative oxidation numbers are assigned to most electronegative element in covalent compounds.
6. Sum of oxidation numbers of different elements in neutral atom is zero.
7. Sum of oxidation numbers of various elements in polyatomic ion is equal to charge present on ion.
(a)

Explanation of Solution
Given reaction (1) is as follows:
Oxidation number of each atom in reaction (1) is as follows:
Since oxidation state of carbon changes from
Given reaction (2) is as follows:
Oxidation number of each atom in reaction (2) is as follows:
Since oxidation state of sulfur changes from
Given reaction (3) is as follows:
Oxidation number of each atom in reaction (3) is as follows:
Since oxidation state of nitrogen changes from
Given reaction (4) is as follows:
Oxidation number of each atom in reaction (4) is as follows:
Since oxidation state of sulfur changes from
Given reaction (5) is as follows:
Oxidation number of each atom in reaction (5) is as follows:
Since oxidation state of oxygen changes from
(b)
Interpretation:
Atom or ion reduced in reactions below has to be determined.
Concept Introduction:
Refer to part (a).
(b)

Explanation of Solution
Given reaction (1) is as follows:
Oxidation number of each atom in reaction (1) is as follows:
Since oxidation state of oxygen changes from 0 to
Given reaction (2) is as follows:
Oxidation number of each atom in reaction (2) is as follows:
Since oxidation state of nitrogen changes from
Given reaction (3) is as follows:
Oxidation number of each atom in reaction (3) is as follows:
Since oxidation state of copper changes from
Given reaction (4) is as follows:
Oxidation number of each atom in reaction (4) is as follows:
Since oxidation state of oxygen changes from
Given reaction (5) is as follows:
Oxidation number of each atom in reaction (5) is as follows:
Since oxidation state of oxygen changes from
(c)
Interpretation:
Oxidizing agent in reactions below has to be determined.
Concept Introduction:
Refer to part (a).
(c)

Explanation of Solution
Given reaction (1) is as follows:
Oxidation number of each atom in reaction (1) is as follows:
Since oxidation state of oxygen changes from 0 to
Given reaction (2) is as follows:
Oxidation number of each atom in reaction (2) is as follows:
Since oxidation state of nitrogen changes from
Given reaction (3) is as follows:
Oxidation number of each atom in reaction (3) is as follows:
Since oxidation state of copper changes from
Given reaction (4) is as follows:
Oxidation number of each atom in reaction (4) is as follows:
Since oxidation state of oxygen changes from
Given reaction (5) is as follows:
Oxidation number of each atom in reaction (5) is as follows:
Since oxidation state of oxygen changes from
(d)
Interpretation:
Reducing agent in reactions below has to be determined.
Concept Introduction:
Refer to part (a).
(d)

Explanation of Solution
Given reaction (1) is as follows:
Oxidation number of each atom in reaction (1) is as follows:
Since oxidation state of carbon changes from
Given reaction (2) is as follows:
Oxidation number of each atom in reaction (2) is as follows:
Since oxidation state of sulfur changes from
Given reaction (3) is as follows:
Oxidation number of each atom in reaction (3) is as follows:
Since oxidation state of nitrogen changes from
Given reaction (4) is as follows:
Oxidation number of each atom in reaction (4) is as follows:
Since oxidation state of sulfur changes from
Given reaction (5) is as follows:
Oxidation number of each atom in reaction (5) is as follows:
Since oxidation state of oxygen changes from
(e)
Interpretation:
Oxidation state change in oxidizing agent in reactions below has to be determined.
Concept Introduction:
Refer to part (a).
(e)

Explanation of Solution
Given reaction (1) is as follows:
Oxidation number of each atom in reaction (1) is as follows:
Since oxidation state of oxygen changes from 0 to
Hence oxidation state of oxidizing agent in this reaction changes from 0 to
Given reaction (2) is as follows:
Oxidation number of each atom in reaction (2) is as follows:
Since oxidation state of nitrogen changes from
Hence oxidation state of oxidizing agent in this reaction changes from
Given reaction (3) is as follows:
Oxidation number of each atom in reaction (3) is as follows:
Since oxidation state of copper changes from
Hence oxidation state of oxidizing agent in this reaction changes from
Given reaction (4) is as follows:
Oxidation number of each atom in reaction (4) is as follows:
Since oxidation state of oxygen changes from
Hence oxidation state of oxidizing agent in this reaction changes from
Given reaction (5) is as follows:
Oxidation number of each atom in reaction (5) is as follows:
Since oxidation state of oxygen changes from
Hence oxidation state of oxidizing agent in this reaction changes from
(f)
Interpretation:
Oxidation state change in reducing agent in reactions below has to be determined.
Concept Introduction:
Refer to part (a).
(f)

Explanation of Solution
Given reaction (1) is as follows:
Oxidation number of each atom in reaction (1) is as follows:
Since oxidation state of carbon changes from
Hence oxidation state of reducing agent in this reaction changes from
Given reaction (2) is as follows:
Oxidation number of each atom in reaction (2) is as follows:
Since oxidation state of sulfur changes from
Hence oxidation state of reducing agent in this reaction changes from
Given reaction (3) is as follows:
Oxidation number of each atom in reaction (3) is as follows:
Since oxidation state of nitrogen changes from
Hence oxidation state of reducing agent in this reaction changes from
Given reaction (4) is as follows:
Oxidation number of each atom in reaction (4) is as follows:
Since oxidation state of sulfur changes from
Hence oxidation state of reducing agent in this reaction changes from
Given reaction (5) is as follows:
Oxidation number of each atom in reaction (5) is as follows:
Since oxidation state of oxygen changes from
Hence oxidation state of reducing agent in this reaction changes from
Want to see more full solutions like this?
Chapter 17 Solutions
EBK FOUNDATIONS OF COLLEGE CHEMISTRY
- 4. Read paragraph 4.15 from your textbook, use your calculated lattice energy values for CuO, CuCO3 and Cu(OH)2 an explain thermal decomposition reaction of malachite: Cu2CO3(OH)2 →2CuO + H2O + CO2 (3 points)arrow_forwardPlease sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forwardIII O Organic Chemistry Using wedges and dashes in skeletal structures Draw a skeletal ("line") structure for each of the molecules below. Be sure your structures show the important difference between the molecules. key O O O O O CHON Cl jiii iiiiiiii You can drag the slider to rotate the molecules. Explanation Check Click and drag to start drawing a structure. Q Search X G ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use F 3 W C 3/5arrow_forward
- 3. Use Kapustinskii's equation and data from Table 4.10 in your textbook to calculate lattice energies of Cu(OH)2 and CuCO3 (4 points)arrow_forward2. Copper (II) oxide crystalizes in monoclinic unit cell (included below; blue spheres 2+ represent Cu²+, red - O²-). Use Kapustinski's equation (4.5) to calculate lattice energy for CuO. You will need some data from Resource section of your textbook (p.901). (4 points) CuOarrow_forwardWhat is the IUPAC name of the following compound? OH (2S, 4R)-4-chloropentan-2-ol O (2R, 4R)-4-chloropentan-2-ol O (2R, 4S)-4-chloropentan-2-ol O(2S, 4S)-4-chloropentan-2-olarrow_forward
- Use the reaction coordinate diagram to answer the below questions. Type your answers into the answer box for each question. (Watch your spelling) Energy A B C D Reaction coordinate E A) Is the reaction step going from D to F endothermic or exothermic? A F G B) Does point D represent a reactant, product, intermediate or transition state? A/ C) Which step (step 1 or step 2) is the rate determining step? Aarrow_forward1. Using radii from Resource section 1 (p.901) and Born-Lande equation, calculate the lattice energy for PbS, which crystallizes in the NaCl structure. Then, use the Born-Haber cycle to obtain the value of lattice energy for PbS. You will need the following data following data: AH Pb(g) = 196 kJ/mol; AHƒ PbS = −98 kJ/mol; electron affinities for S(g)→S¯(g) is -201 kJ/mol; S¯(g) (g) is 640kJ/mol. Ionization energies for Pb are listed in Resource section 2, p.903. Remember that enthalpies of formation are calculated beginning with the elements in their standard states (S8 for sulfur). The formation of S2, AHF: S2 (g) = 535 kJ/mol. Compare the two values, and explain the difference. (8 points)arrow_forwardIn the answer box, type the number of maximum stereoisomers possible for the following compound. A H H COH OH = H C Br H.C OH CHarrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning




