
(a)
Interpretation:
The below equation through change in oxidation number method has to be balanced.
Concept Introduction:
Steps for change in oxidation number method to
1 Oxidation number of each element has to be assigned and change in oxidation number has to be identified. Then add electrons to balance charge.
2 Two half-reactions with only elements that have changed oxidation numbers have to be formed.
3 Both reactions multiplied by smallest whole number that can make electrons lost equal to electron gained.
4 Coefficient should transfer to original equation.
5 Remaining oxygen atoms are balanced through water molecules.
6 For acidic medium, charge is balanced by addition of
(a)

Explanation of Solution
Given reaction is as follows:
Oxidation number of each element in equation (1) can be assigned as follows:
Change in oxidation number occurred in copper and oxygen thus two half-reactions can be formed as follows:
Oxidation half-reaction for copper is as follows:
Reduction half-reaction for oxygen is as follows:
Multiply equation (2) by 2 so that number of electrons gained and lost becomes same and cancels each other. Thus, equation (2) is as follows:
Coefficient of atoms in equation (3) and equation (4) of half reactions gets transfer to equation (1). Remaining atoms are balanced by equalizing its number on both sides. Thus balanced equation is as follows:
(b)
Interpretation:
The below equation through change in oxidation number method has to be balanced.
Concept Introduction:
Refer to part (a).
(b)

Explanation of Solution
Given reaction is as follows:
Oxidation number of each element in equation (5) can be assigned as follows:
Change in oxidation number occurred in oxygen and chlorine thus two half-reactions can be formed as follows:
Oxidation half-reaction for oxygen is as follows:
Reduction half-reaction for chlorine is as follows:
Coefficient of atoms in both half reactions gets transfer to equation (5). Remaining atoms are balanced by equalizing its number on both sides. Thus balanced equation is as follows:
(c)
Interpretation:
The below equation through change in oxidation number method has to be balanced.
Concept Introduction:
Refer to part (a).
(c)

Explanation of Solution
Given reaction is as follows:
Oxidation number of each element in equation (9) can be assigned as follows:
Change in oxidation number occurred in calcium and hydrogen thus two balanced half-reactions can be formed as follows:
Balanced oxidation half-reaction for calcium is as follows:
Balanced reduction half-reaction for hydrogen is as follows:
Coefficient of atoms in equation (10) and equation (11) of half reactions gets transfer to equation (9). Remaining atoms are balanced by equalizing its number on both sides. Thus balanced equation is as follows:
(d)
Interpretation:
The below equation through change in oxidation number method has to be balanced.
Concept Introduction:
Refer to part (a).
(d)

Explanation of Solution
Given reaction is as follows:
Oxidation number of each element in equation (12) can be assigned as follows:
Change in oxidation number occurred in sulfur and oxygen thus two balanced half-reactions can be formed as follows:
Balanced oxidation half-reaction for sulfur is as follows:
Balanced reduction half-reaction for oxygen is as follows:
Multiply equation (14) by 4 so that number of electrons gained and lost becomes same and cancels each other. Thus, equation (14) becomes as follows:
Coefficient of atoms in equation (13) and equation (15) of half reactions gets transfer to equation (12). Remaining atoms are balanced by equalizing its number on both sides. Thus balanced equation is as follows:
(e)
Interpretation:
The below equation through change in oxidation number method has to be balanced.
Concept Introduction:
Refer to part (a).
(e)

Explanation of Solution
Given reaction is as follows:
Oxidation number of each element in equation (16) can be assigned as follows:
Change in oxidation number occurred in carbon and nitrogen thus two balanced half-reactions can be formed as follows:
Balanced oxidation half-reaction for carbon is as follows:
Balanced reduction half-reaction for nitrogen is as follows:
Coefficient of atoms in equation (17) and equation (18) of half reactions gets transfer to equation (19). Remaining atoms are balanced by equalizing its number on both sides. Thus balanced equation is as follows:
Want to see more full solutions like this?
Chapter 17 Solutions
EBK FOUNDATIONS OF COLLEGE CHEMISTRY
- PROBLEMS Q1) Label the following salts as either acidic, basic, or neutral a) Fe(NOx) c) AlBr b) NH.CH COO d) HCOON (1/2 mark each) e) Fes f) NaBr Q2) What is the pH of a 0.0750 M solution of sulphuric acid?arrow_forward8. Draw all the resonance forms for each of the fling molecules or ions, and indicate the major contributor in each case, or if they are equivalent (45) (2) -PH2 سمة مدarrow_forwardA J то گای ه +0 Also calculate the amount of starting materials chlorobenzaldehyde and p-chloroacetophenone required to prepare 400 mg of the given chalcone product 1, 3-bis(4-chlorophenyl)prop-2-en-1-one molar mass ok 1,3-bis(4-Chlorophenyl) prop-2-en-1-one = 277.1591m01 number of moles= 0.400/277.15 = 0.00144 moles 2 x 0.00 144=0.00288 moves arams of acetophenone = 0.00144 X 120.16 = 0.1739 0.1739x2=0.3469 grams of benzaldehyde = 0.00144X106.12=0.1539 0.1539x2 = 0.3069 Starting materials: 0.3469 Ox acetophenone, 0.3069 of benzaldehyde 3arrow_forward
- 1. Answer the questions about the following reaction: (a) Draw in the arrows that can be used make this reaction occur and draw in the product of substitution in this reaction. Be sure to include any relevant stereochemistry in the product structure. + SK F Br + (b) In which solvent would this reaction proceed the fastest (Circle one) Methanol Acetone (c) Imagine that you are working for a chemical company and it was your job to perform a similar reaction to the one above, with the exception of the S atom in this reaction being replaced by an O atom. During the reaction, you observe the formation of three separate molecules instead of the single molecule obtained above. What is the likeliest other products that are formed? Draw them in the box provided.arrow_forward3. For the reactions below, draw the arrows corresponding to the transformations and draw in the boxes the reactants or products as indicated. Note: Part A should have arrows drawn going from the reactants to the middle structure and the arrows on the middle structure that would yield the final structure. For part B, you will need to draw in the reactant before being able to draw the arrows corresponding to product formation. A. B. Rearrangement ΘΗarrow_forward2. Draw the arrows required to make the following reactions occur. Please ensure your arrows point from exactly where you want to exactly where you want. If it is unclear from where arrows start or where they end, only partial credit will be given. Note: You may need to draw in lone pairs before drawing the arrows. A. B. H-Br 人 C Θ CI H Cl Θ + Br Oarrow_forward
- 4. For the reactions below, draw the expected product. Be sure to indicate relevant stereochemistry or formal charges in the product structure. a) CI, H e b) H lux ligh Br 'Harrow_forwardArrange the solutions in order of increasing acidity. (Note that K (HF) = 6.8 x 10 and K (NH3) = 1.8 × 10-5) Rank solutions from least acidity to greatest acidity. To rank items as equivalent, overlap them. ▸ View Available Hint(s) Least acidity NH&F NaBr NaOH NH,Br NaCIO Reset Greatest acidityarrow_forward1. Consider the following molecular-level diagrams of a titration. O-HA molecule -Aion °° о ° (a) о (b) (c) (d) a. Which diagram best illustrates the microscopic representation for the EQUIVALENCE POINT in a titration of a weak acid (HA) with sodium. hydroxide? (e)arrow_forward
- Answers to the remaining 6 questions will be hand-drawn on paper and submitted as a single file upload below: Review of this week's reaction: H₂NCN (cyanamide) + CH3NHCH2COOH (sarcosine) + NaCl, NH4OH, H₂O ---> H₂NC(=NH)N(CH3)CH2COOH (creatine) Q7. Draw by hand the reaction of creatine synthesis listed above using line structures without showing the Cs and some of the Hs, but include the lone pairs of electrons wherever they apply. (4 pts) Q8. Considering the Zwitterion form of an amino acid, draw the Zwitterion form of Creatine. (2 pts) Q9. Explain with drawing why the C-N bond shown in creatine structure below can or cannot rotate. (3 pts) NH2(C=NH)-N(CH)CH2COOH This bond Q10. Draw two tautomers of creatine using line structures. (Note: this question is valid because problem Q9 is valid). (4 pts) Q11. Mechanism. After seeing and understanding the mechanism of creatine synthesis, students should be ready to understand the first half of one of the Grignard reactions presented in a past…arrow_forwardPropose a synthesis pathway for the following transformations. b) c) d)arrow_forwardThe rate coefficient of the gas-phase reaction 2 NO2 + O3 → N2O5 + O2 is 2.0x104 mol–1 dm3 s–1 at 300 K. Indicate whether the order of the reaction is 0, 1, or 2.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





