
(a)
Interpretation:
Oxidation number of each element in
Concept Introduction:
Oxidation number is integer value allotted to every element. It is formal charge occupied by atom if all of its bonds are dissociated heterolytically. Below mentioned are rules to assign oxidation numbers to various elements.
1. Elements present in their free state have zero oxidation number.
2. Oxidation number of hydrogen is generally
3. Oxidation number of oxygen is
4. Metals have positive oxidation numbers.
5. Negative oxidation numbers are assigned to most electronegative element in covalent compounds.
6. Sum of oxidation numbers of different elements in neutral atom is zero.
7. Sum of oxidation numbers of various elements in polyatomic ion is equal to charge present on ion.
(a)

Explanation of Solution
Since fluorine is member of halogen group, its oxidation number is
Expression for oxidation number in
Rearrange equation (1) for oxidation number of
Substitute
Hence, oxidation number of
(b)
Interpretation:
Oxidation number of each element in
Concept Introduction:
Refer to part (a).
(b)

Explanation of Solution
Since
Expression for oxidation number in
Rearrange equation (3) for oxidation number of
Substitute
Hence, oxidation number of
(c)
Interpretation:
Oxidation number of each element in
Concept Introduction:
Refer to part (a).
(c)

Explanation of Solution
Since fluorine is member of halogen family, oxidation number of
Expression for oxidation number in
Rearrange equation (5) for oxidation number of
Substitute
Hence, oxidation number of
(d)
Interpretation:
Oxidation number of each element in
Concept Introduction:
Refer to part (a).
(d)

Explanation of Solution
Since
Expression for oxidation number in
Rearrange equation (7) for oxidation number of
Substitute
Hence, oxidation number of
(e)
Interpretation:
Oxidation number of each element in
Concept Introduction:
Refer to part (a).
(e)

Explanation of Solution
Since
Expression for oxidation number in
Rearrange equation (9) for oxidation number of
Substitute
Hence, oxidation state of
(f)
Interpretation:
Oxidation number of each element in
Concept Introduction:
Refer to part (a).
(f)

Explanation of Solution
Since
Expression for oxidation number in
Rearrange equation (11) for oxidation number of
Substitute
Hence, oxidation number of
Want to see more full solutions like this?
Chapter 17 Solutions
EBK FOUNDATIONS OF COLLEGE CHEMISTRY
- Understanding how substituents activate Rank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. Explanation HN NH2 Check X (Choose one) (Choose one) (Choose one) (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center Aarrow_forwardIdentifying electron-donating and electron-withdrawing effects on benzene For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Inductive Effects Resonance Effects Overall Electron-Density Molecule CF3 O donating O donating O withdrawing O withdrawing O no inductive effects O no resonance effects electron-rich electron-deficient O similar to benzene CH3 O donating O withdrawing O no inductive effects O donating O withdrawing Ono resonance effects O electron-rich O electron-deficient O similar to benzene Explanation Check Х © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forward* Hint: Think back to Chem 1 solubility rules. Follow Up Questions for Part B 12. What impact do the following disturbances to a system at equilibrium have on k, the rate constant for the forward reaction? Explain. (4 pts) a) Changing the concentration of a reactant or product. (2 pts) b) Changing the temperature of an exothermic reaction. (2 pts) ofarrow_forward
- Draw TWO general chemical equation to prepare Symmetrical and non-Symmetrical ethers Draw 1 chemical reaction of an etherarrow_forwardPlease help me with the following questions for chemistry.arrow_forwardDraw the chemical structure [OR IUPAC name] of the following: a- m-chloromethoxybenzene b.arrow_forward
- Show by chemical equation the reaction of [HCN] and [CH3MgBr] with any alarrow_forwardGive the chemical equation for the preparation of: -Any aldehyde -Any keytonearrow_forward+ C8H16O2 (Fatty acid) + 11 02 → 8 CO2 a. Which of the above are the reactants? b. Which of the above are the products? H2o CO₂ c. Which reactant is the electron donor? Futty acid d. Which reactant is the electron acceptor? e. Which of the product is now reduced? f. Which of the products is now oxidized? 02 #20 102 8 H₂O g. Where was the carbon initially in this chemical reaction and where is it now that it is finished? 2 h. Where were the electrons initially in this chemical reaction and where is it now that it is finished?arrow_forward
- → Acetyl-CoA + 3NAD+ + 1FAD + 1ADP 2CO2 + CoA + 3NADH + 1FADH2 + 1ATP a. Which of the above are the reactants? b. Which of the above are the products? c. Which reactant is the electron donor? d. Which reactants are the electron acceptors? e. Which of the products are now reduced? f. Which product is now oxidized? g. Which process was used to produce the ATP? h. Where was the energy initially in this chemical reaction and where is it now that it is finished? i. Where was the carbon initially in this chemical reaction and where is it now that it is finished? j. Where were the electrons initially in this chemical reaction and where is it now that it is finished?arrow_forwardRank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. OCH 3 (Choose one) OH (Choose one) Br (Choose one) Explanation Check NO2 (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Aarrow_forwardFor each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects O donating O withdrawing O no inductive effects Resonance Effects Overall Electron-Density ○ donating ○ withdrawing O no resonance effects O electron-rich O electron-deficient O similar to benzene Cl O donating O withdrawing ○ donating ○ withdrawing O no inductive effects O no resonance effects O Explanation Check O electron-rich O electron-deficient similar to benzene X © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessarrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning




