Essential University Physics: Volume 1; Mastering Physics with Pearson eText -- ValuePack Access Card -- for Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134197319
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 37P
A compressed air cylinder stands 100 cm tall and has internal diameter 20.0 cm. At room temperature, the pressure is 180 atm. (a) How many moles of air are in the cylinder? (b) What volume would this air occupy at 1.0 atm and room temperature?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The mean free path for helium at a certain temperature and pressure is 2.10 × 10−7 m. The radius of a helium atom can be taken as 1.10 × 10−11 m . What is the measure of the density of helium under those conditions (a) in molecules per cubic meter and (b) in moles per cubic meter?
In the lungs, the respiratory membrane separates tiny sacs of air (absolute pressure=1.00x105 Pa) from the blood in the capillaries. These sacs are called alveoli, and it is from them that oxygen enters the blood. The average radius of the alveoli is 0.125 mm, and the air inside contains 14% oxygen, which is somewhat smaller amount than in fresh air. Assuming that the air behaves as an ideal gas at body temperature (310 K), find the number of oxygen molecules in one of the sacs.
The mean free path for a certain gas is 2.18×10−7 m. and the radius of an atom of said gas is approximately 1.11×10−11 m. What is the density of the gas in moles per cubic meter under these conditions?
Chapter 17 Solutions
Essential University Physics: Volume 1; Mastering Physics with Pearson eText -- ValuePack Access Card -- for Essential University Physics (3rd Edition)
Ch. 17.1 - If you double the kelvin temperature of a gas,...Ch. 17.2 - You bring a pot of water to boil and then forget...Ch. 17.3 - The figure shows a donut-shaped object. If its...Ch. 17 - Prob. 1FTDCh. 17 - According to the ideal-gas law, what should be the...Ch. 17 - Why are you supposed to check tire pressure when...Ch. 17 - The average speed of the molecules in a gas...Ch. 17 - Suppose you start running while holding a closed...Ch. 17 - Prob. 6FTDCh. 17 - Your roommate claims that ice and snow must be at...
Ch. 17 - Whats the temperature of water just under the ice...Ch. 17 - Ice and water have been together in a glass for a...Ch. 17 - Which takes more heat: melting a gram of ice...Ch. 17 - The atmospheres of relatively low-mass planets...Ch. 17 - The triple point of water defines a precise...Ch. 17 - How is it possible to have boiling water at a...Ch. 17 - How does a pressure cooker work?Ch. 17 - Suppose mercury and glass had the same coefficient...Ch. 17 - A bimetallic strip consists of thin pieces of...Ch. 17 - Marss atmospheric pressure is about 1% that of...Ch. 17 - Prob. 18ECh. 17 - Whats the pressure of an ideal gas if 3.5 mol...Ch. 17 - Prob. 20ECh. 17 - (a) If 2.0 mol of an ideal gas are initially at...Ch. 17 - A pressure of 1010 Pa is readily achievable with...Ch. 17 - Whats the thermal speed of hydrogen molecules at...Ch. 17 - In which gas are the molecules moving faster:...Ch. 17 - How much energy does it take to melt a 65-g ice...Ch. 17 - It takes 200 J to melt an 8.0-g sample of one of...Ch. 17 - If it takes 840 kJ to vaporize a sample of liquid...Ch. 17 - Carbon dioxide sublimes (changes from solid to...Ch. 17 - Find the energy needed to convert 28 kg of liquid...Ch. 17 - A copper wire is 20 m long on a winter day when...Ch. 17 - You have exactly 1 L of ethyl alcohol at room...Ch. 17 - A Pyrex glass marble is 1.00000 cm in diameter at...Ch. 17 - At 0C, the hole in a steel washer is 9.52 mm in...Ch. 17 - Suppose a single piece of welded steel railroad...Ch. 17 - Prob. 35PCh. 17 - Prob. 36PCh. 17 - A compressed air cylinder stands 100 cm tall and...Ch. 17 - Youre a lawyer with an unusual case. A...Ch. 17 - A 3000-mL flask is initially open in a room...Ch. 17 - The recommended treatment for frostbite is rapid...Ch. 17 - A stove burner supplies heat to a pan at the rate...Ch. 17 - If a 1-megaton nuclear bomb were exploded deep in...Ch. 17 - Youre winter camping and are melting snow for...Ch. 17 - Prob. 44PCh. 17 - A refrigerator extracts energy from its contents...Ch. 17 - Climatologists have recently recognized that black...Ch. 17 - Repeat Example 17.4 with an initial ice mass of 50...Ch. 17 - How much energy does it take to melt 10 kg of ice...Ch. 17 - Water is brought to its boiling point and then...Ch. 17 - Prob. 50PCh. 17 - Whats the minimum amount of ice in Example 17.4...Ch. 17 - A bowl contains 16 kg of punch (essentially water)...Ch. 17 - A 50-g ice cube at 10C is placed in an equal mass...Ch. 17 - Prob. 54PCh. 17 - What power is needed to melt 20 kg of ice in 6.0...Ch. 17 - You put 300 g of water at 20C into a 500-W...Ch. 17 - If 4.5 105 kg of emergency cooling water at 10C...Ch. 17 - Describe the composition and temperature of the...Ch. 17 - A glass marble 1.000 cm in diameter is to be...Ch. 17 - Prob. 60PCh. 17 - A steel ball bearing is encased in a Pyrex glass...Ch. 17 - Fuel systems of modern cars are designed so...Ch. 17 - A rod of length L0 is clamped rigidly at both...Ch. 17 - Prob. 64PCh. 17 - A solar-heated house stores energy in 5.0 tons of...Ch. 17 - Show that the coefficient of volume expansion of...Ch. 17 - Waters coefficient of volume expansion in the...Ch. 17 - When the expansion coefficient varies with...Ch. 17 - Ignoring air resistance, find the height from...Ch. 17 - The timekeeping of a grandfather clock is...Ch. 17 - Prob. 71PCh. 17 - Prob. 72PCh. 17 - Figure 17.12 shows an apparatus used to determine...Ch. 17 - Prob. 74PCh. 17 - (a) Show that, for an ideal gas, the speed of...Ch. 17 - The Maxwell-Boltzmann distribution, plotted in...Ch. 17 - At high gas densities, the van der Waals equation...Ch. 17 - Prob. 78PPCh. 17 - Prob. 79PPCh. 17 - Because some pathogens can survive 120C...Ch. 17 - Prob. 81PP
Additional Science Textbook Solutions
Find more solutions based on key concepts
What type of culture medium would increase the size of a bacterial capsule?
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Flask A contains yeast cells in glucose-minimal salts broth incubated at 30C with aeration. Flask B contains ye...
Microbiology: An Introduction
Choose the best answer to each of the following. Explain your reasoning. The fact that we always see the same f...
Cosmic Perspective Fundamentals
MAKE CONNECTIONS Balancing selection can maintain variation at a locus (see Concept 23.4). Based on the foragi...
Campbell Biology (11th Edition)
1. ___ Mitosis 2. ___ Meiosis 3. __ Homologous chromosomes 4. __ Crossing over 5. __ Cytokinesis A. Cytoplasmic...
Microbiology with Diseases by Body System (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Cylinder A contains oxygen (O2) gas, and cylinder B contains nitrogen (N2) gas. If the molecules in the two cylinders have the same rms speeds, which of the following statements is false? (a) The two gases haw different temperatures. (b) The temperature of cylinder B is less than the temperature of cylinder A. (c) The temperature of cylinder B is greater than the temperature of cylinder A. (d) The average kinetic energy of the nitrogen molecules is less than the average kinetic energy of the oxygen molecules.arrow_forwardA sample of a hypothetical ideal gas has a volume of 0.5 m3 at a temperature of 5◦C and a pressure of 250 kPa. (a) How many molecules of gas are there in this sample? (b) How many moles of gas are there in this sample? Answer: (a) 3.3×1025 molecles (b) 54 molarrow_forwardOne mole of an ideal gas at standard temperature and pressure occupies 22.4 L (molar volume). What is the ratio of molar volume to the atomic volume of a mole of hydrogen ? (Take the size of hydrogen molecule to be about 1 Å). Why is this ratio so large ?arrow_forward
- Problem 8: A bicycle tire has a pressure of 6.85 × 105 Pa at a temperature of 19°C and contains 2.00 L of gas. What will its pressure be, in pascals, if you let out an amount of air that has a volume of 105 cm3 at atmospheric pressure and at the temperature of the tire? Assume tire temperature and volume remain constant.arrow_forwardThree moles of an ideal gas are in a rigid cubical box with sides of length 0.300 m. (a) What is the force that the gas exerts on each of the six sides of the box when the gas temperature is 20.0C? (b) What is the force when the temperature of the gas is increased to 100.0C?arrow_forwardThe temperature of an ideal gas remains constant while the pressure changes from 103.425 Kpaa to 1034.25 Kpaa. (a) If the initial volume is 0.08 cubic meters, determine the final volume. (b) For 0.77 Kgm of this gas, determine the change in density as a percentage of the initial density.arrow_forward
- A 20.0 L tank contains 4.86×10^-4 kg of helium at 18°C. The molar mass of helium is 4.00 g/mol. (a) how many moles of helium are in the tank? (b) what is the pressure in the tank in pascals and atmosphere?arrow_forwardA vertical cylindrical tank contains 1.80 mol of an ideal gas under a pressure of 0.300 atm at 20.0C. The round part of the tank has a radius of 10.0 cm, and the gas is supporting a piston that can move up and down in the cylinder without friction. There is a vacuum above the piston. (a) What is the mass of this piston? (b) How tall is the column of gas that is supporting the piston?arrow_forwardTwo glass containers, of equal volume each hold a mole of gas. Container 1 is filled with hydrogen gas (molar mass 2 g / mol), and Container 2 holds helium (molar mass 4 g / mol). If the pressure of the gas in Container 1 equals the pressure of the gas in Container 2, which of the following is true? (a) The temperature of the gas in Container 1 is lower than the temperature of the gas in Container 2. (b) The temperature of the gas in Container 1 is greater than the temperature of the gas in Container 2. (c) The value of R for the gas in Container 1 is ½ the value of R for the gas in Container 2. (d) The rms speed of the gas molecules in Container 1 is lower than the rms speed of the gas molecules in Container 2. (e) The rms speed of the gas molecules in Container 1 is greater than the rms speed of the gas molecules in Container 2.arrow_forward
- Two moles of an ideal gas are placed in a container whose volume is 3.1 x 10-3 m3. The absolute pressure of the gas is 5.5 x 105 Pa. What is the average translational kinetic energy of a molecule of the gas?arrow_forwardThe gas law for an ideal gas at absolute temperature T (in kelvins), pressure P (in atmospheres), and volume V (in liters) is PV = nRT, where n is the number of moles of the gas and R = 0.0821 is the gas constant. Suppose that, at a certain instant, P = 7.0 atm and is increasing at a rate of 0.15 atm/min and V = 13 and is decreasing at a rate of 0.17 L/min. Find the rate of change of T with respect to time (in K/min) at that instant if n = 10 mol.(Round your answer to four decimal places.)arrow_forwardYou accidentally lose your Helium-filled balloon which floats to the ceiling. The balloon is initially inflated to a radius of 6 inches (assume a sphere). The balloon’s empty mass is 10 g. The density of the rubber is 0.8 g/cm3. Assuming the contents of the balloon are purely helium @ p=1 atm, T=300 K, how much less mass is in the He balloon than in an equivalent balloon full of air? What is the amount of lift generated by the He balloon?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinetic Molecular Theory and its Postulates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=o3f_VJ87Df0;License: Standard YouTube License, CC-BY