Essential University Physics: Volume 1; Mastering Physics with Pearson eText -- ValuePack Access Card -- for Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134197319
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 72P
To determine
Whether the design for the mission will work.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
On Mars, the atmosphere is composed mainly of carbon dioxide. The value of the gas
constant for the Martian atmosphere is 192 J/kg-K, and the acceleration of gravity there
is 3.72 m/s?. At the average level of the Martian surface, the average temperature is 230
K, the pressure is 790 N/m?. At a certain altitude, the pressure is 680 N/m? and the
average temperature is 203 K.
6. The temperature lapse rate is:
A) – 0.01613 K/m
B) – 0.1613 K/m
C) – 1.613 K/m
D) None of the above
7. The altitude is:
A) 1200 m
B) 1675 m
C) 1765 m
D) None of the above
The number density of gas atoms at a certain location in the space above our planet is about 2.90 ✕ 1011 m−3, and the pressure is 2.40 ✕ 10−10 N/m2 in this space. What is the temperature (in °C) there?
A high-pressure gas cylinder contains 60.0 L of toxic gas at a pressure of 1.43 ✕ 107 N/m2 and a temperature of 22.0°C. Its valve leaks after the cylinder is dropped. The cylinder is cooled to dry ice temperature (−78.5°C) to reduce the leak rate and pressure so that it can be safely repaired.
What is the final pressure in the tank in pascals, assuming a negligible amount of gas leaks while being cooled and that there is no phase change?
The number density of gas atoms at a certain location in the space above our planet is about 1.40 ✕ 1011 m−3, and the pressure is 1.10 ✕ 10−10 N/m2 in this space. What is the temperature (in °C) there?
Chapter 17 Solutions
Essential University Physics: Volume 1; Mastering Physics with Pearson eText -- ValuePack Access Card -- for Essential University Physics (3rd Edition)
Ch. 17.1 - If you double the kelvin temperature of a gas,...Ch. 17.2 - You bring a pot of water to boil and then forget...Ch. 17.3 - The figure shows a donut-shaped object. If its...Ch. 17 - Prob. 1FTDCh. 17 - According to the ideal-gas law, what should be the...Ch. 17 - Why are you supposed to check tire pressure when...Ch. 17 - The average speed of the molecules in a gas...Ch. 17 - Suppose you start running while holding a closed...Ch. 17 - Prob. 6FTDCh. 17 - Your roommate claims that ice and snow must be at...
Ch. 17 - Whats the temperature of water just under the ice...Ch. 17 - Ice and water have been together in a glass for a...Ch. 17 - Which takes more heat: melting a gram of ice...Ch. 17 - The atmospheres of relatively low-mass planets...Ch. 17 - The triple point of water defines a precise...Ch. 17 - How is it possible to have boiling water at a...Ch. 17 - How does a pressure cooker work?Ch. 17 - Suppose mercury and glass had the same coefficient...Ch. 17 - A bimetallic strip consists of thin pieces of...Ch. 17 - Marss atmospheric pressure is about 1% that of...Ch. 17 - Prob. 18ECh. 17 - Whats the pressure of an ideal gas if 3.5 mol...Ch. 17 - Prob. 20ECh. 17 - (a) If 2.0 mol of an ideal gas are initially at...Ch. 17 - A pressure of 1010 Pa is readily achievable with...Ch. 17 - Whats the thermal speed of hydrogen molecules at...Ch. 17 - In which gas are the molecules moving faster:...Ch. 17 - How much energy does it take to melt a 65-g ice...Ch. 17 - It takes 200 J to melt an 8.0-g sample of one of...Ch. 17 - If it takes 840 kJ to vaporize a sample of liquid...Ch. 17 - Carbon dioxide sublimes (changes from solid to...Ch. 17 - Find the energy needed to convert 28 kg of liquid...Ch. 17 - A copper wire is 20 m long on a winter day when...Ch. 17 - You have exactly 1 L of ethyl alcohol at room...Ch. 17 - A Pyrex glass marble is 1.00000 cm in diameter at...Ch. 17 - At 0C, the hole in a steel washer is 9.52 mm in...Ch. 17 - Suppose a single piece of welded steel railroad...Ch. 17 - Prob. 35PCh. 17 - Prob. 36PCh. 17 - A compressed air cylinder stands 100 cm tall and...Ch. 17 - Youre a lawyer with an unusual case. A...Ch. 17 - A 3000-mL flask is initially open in a room...Ch. 17 - The recommended treatment for frostbite is rapid...Ch. 17 - A stove burner supplies heat to a pan at the rate...Ch. 17 - If a 1-megaton nuclear bomb were exploded deep in...Ch. 17 - Youre winter camping and are melting snow for...Ch. 17 - Prob. 44PCh. 17 - A refrigerator extracts energy from its contents...Ch. 17 - Climatologists have recently recognized that black...Ch. 17 - Repeat Example 17.4 with an initial ice mass of 50...Ch. 17 - How much energy does it take to melt 10 kg of ice...Ch. 17 - Water is brought to its boiling point and then...Ch. 17 - Prob. 50PCh. 17 - Whats the minimum amount of ice in Example 17.4...Ch. 17 - A bowl contains 16 kg of punch (essentially water)...Ch. 17 - A 50-g ice cube at 10C is placed in an equal mass...Ch. 17 - Prob. 54PCh. 17 - What power is needed to melt 20 kg of ice in 6.0...Ch. 17 - You put 300 g of water at 20C into a 500-W...Ch. 17 - If 4.5 105 kg of emergency cooling water at 10C...Ch. 17 - Describe the composition and temperature of the...Ch. 17 - A glass marble 1.000 cm in diameter is to be...Ch. 17 - Prob. 60PCh. 17 - A steel ball bearing is encased in a Pyrex glass...Ch. 17 - Fuel systems of modern cars are designed so...Ch. 17 - A rod of length L0 is clamped rigidly at both...Ch. 17 - Prob. 64PCh. 17 - A solar-heated house stores energy in 5.0 tons of...Ch. 17 - Show that the coefficient of volume expansion of...Ch. 17 - Waters coefficient of volume expansion in the...Ch. 17 - When the expansion coefficient varies with...Ch. 17 - Ignoring air resistance, find the height from...Ch. 17 - The timekeeping of a grandfather clock is...Ch. 17 - Prob. 71PCh. 17 - Prob. 72PCh. 17 - Figure 17.12 shows an apparatus used to determine...Ch. 17 - Prob. 74PCh. 17 - (a) Show that, for an ideal gas, the speed of...Ch. 17 - The Maxwell-Boltzmann distribution, plotted in...Ch. 17 - At high gas densities, the van der Waals equation...Ch. 17 - Prob. 78PPCh. 17 - Prob. 79PPCh. 17 - Because some pathogens can survive 120C...Ch. 17 - Prob. 81PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A diver is at 5 meter depth in a fresh water lake. At that depth, the temperature is 15◦C. The pressure in the water at a depth d is given by p(d) = psurface + ρgd, where ρ is the liquid density, and g = 9.81m s−2is the gravitational constant.(a) The diver releases an air bubble of 1cm diameter. What is the diameter of the bubble when it reaches the surface where the temperature is 20◦C?Assume that the bubble temperature is always the same as the surroundingwater.(b) The diver stayed 1h at a 5m depth. The pressure in the diving tank went down from 250 bars to 50 bars. We assume that the volume of the lungs is 5L. Assuming that the water temperature is also 15◦C, how long could the diver have stayed underwater at 20m depth using the same amount of air?(c) The diver is at 5m depth and decides to surface. The air in the lungs is at a constant temperature of 37◦C. What fraction of the air in her/his lungs should the diver inhale/release to maintain a constant lung volume?arrow_forwardAt the end of a warm autumn day, you measure the air pressure in your car's tires and write down their pressure as 2.41 × 105 Pa (about 35 psi) when the outside temperature is 23°C. It cools down quite a bit overnight to -5°C. If you were to measure the air pressure in the tire on that cool morning, what pressure would you measure? Assume that you can ignore the change in the volume of the tire and that no air is released from the tire overnight.arrow_forwardOn the surface of a hypothetical planet X, the atmospheric pressure is 4.25 x 106 Pa, and the temperature is 707 K. On the earth's surface the atmospheric pressure is 1.00 x 105 Pa, while the surface temperature can reach 320 K. These data imply that the planet X has a "thicker" atmosphere at its surface than does the earth, which means that the number of molecules per unit volume (N/V) is greater on the surface of planet X than on the earth. Find the ratio (N/V)X/(N/V)Earth.arrow_forward
- A sealed container with a lid of area 0.004 m2is filled with an ideal gas. The container and gas are allowed to reach thermal equilibrium with the surrounding air. If a 2000 N block is needed to keep the lid from being pushed off the container, what is the absolute pressure inside the container (the pressure compared to vacuum) ?arrow_forwardA container holds 2.5 moles of an ideal gas at a pressure of 3.5 atmospheres and a temperature of 300 Kelvin. If the volume of the container is 10 liters, what is the value of the gas constant (R) in J/(mol·K)?arrow_forwardSpace Physics: The solar corona is a very hot atmosphere surrounding the visible surface of the sun. X-ray emissions from the corona show that its temperature is about 2 × 106 K. The gas pressure in the corona is about 0.03 Pa. Estimate the number density of particles in the solar corona with units of particles per cubic meter.arrow_forward
- Problem 6: Suppose a 26.5°C car tire contains 3.5 mol of gas in a 32.5 L volume. Part (a) What is the gauge pressure, in atmospheres, in the car tire? Pg1 = Part (b) What will the gauge pressure be if you add a quantity of gas that had a volume of 2.00L when it was at atmospheric pressure and the same temperature as the tire? Assume the temperature returns to 26.5°C and the volume remains constant.arrow_forwardIn a room where the temperature is T = 300K, a basketball has been inflated to a gauge pressure of P = 89kPa. The basketball is then taken to the field, where the temperature is T = 270K. What will the basketball's gauge pressure be when its temperature becomes equal to the temperature of the air on the field? Assume the air follows the ideal gas law and that the atmospheric pressure that day was P = 101kPa.arrow_forwardA (1.0x10^1) liter bottle is filled with nitrogen (N2) at STP (Standard Temperature and Pressure is 1 atm and 273 K) and closed tight. If the temperature is raised to 100° C, what will be the new pressure in SI units to two significant figures.arrow_forward
- Problem 1: Consider the two-sided chamber shown,where the right half has a volume of V = 590 L and the left half has a volume of 2V. The chamber has a seal which separates the right from the left half. The chamber is sealed and an ideal gas is pumped into the right side at a pressure P= 6.4 atm and temperature T= 78° C. The seal between the two sides is then opened. 2V V Part (a) If the physical temperature decreases by a factor of 2 while the gas fills the chamber, what is the new pressure, in kilopascals? P'= sin() cos() tan() 7 8 HOME cotan() asin() acos() 5 atan() acotan() sinh() 1 2 3 cosh() tanh() cotanh() + END ODegrees O Radians Vol BACKSPACE CLEAR Submit I give up! Hint Feedback Part (b) The chamber is then sealed again, trapping 2/3 of the gas molecules in the left side. The temperature of the left side is then doubled, back to the original temperature T. What is the pressure in the left side of the chamber now, in kilopascals?arrow_forwardYou are using a 680 W microwave to heat 700 mL of olive oil. If the initial temperature of the oil is 18 C, what is the temperature after 2 minutes in the microwave? Assume the microwave is 88% efficient. Express this temperature in Celsius. Use 1.97 J/gK for the specific heat of olive oil. The specific gravity is 0.915.arrow_forwardThe number density of gas atoms at a certain location in the space above our planet is about 1.00×1011 m−3 , and the pressure is 2.75×10 – 10 N/m2 in this space. What is the temperature there?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning