For a solution that e 0.275M
(a)
Interpretation:
A solution consists propionic acid,
Concept introduction:
The concentration of any solution is calculated by the molarity of the solution. It is defined as the number of moles of solute in 1 L of the solution.
Here, n is number of moles of solute and V is volume of solution in L.
The dissociation constant of the weak acid is calculated by the following formula-
The expression can be written as follows:
Answer to Problem 1E
The concentration of
Explanation of Solution
The complete dissociation of strong acid occurs in the solution, whereas weak acid is not able to dissociate completely.
From the given information,
Propionic acid,
The molarity of propionic acid
Hydroiodic acid, HI = strong acid
The molarity of [HI] or [H3O+] ion = 0.0892 M
The chemical equation of this reaction is given below:
Now, the concentration will be calculated by using the following ICE table:
Initial (I) | 0.275 | - | 0 | 0.0892 |
Change (C) | - x | - | + x | + x |
Equilibrium (E) | 0.275- x | - | x | 0.0892+ x |
Given that-
Ka = 1.3×10-5
The equation for the Ka is as follows:
Put the given values in equation (1).
On calculation −
Now, the concentration of
(b)
Interpretation:
A solution consists propionic acid,
Concept introduction:
The concentration of any solution is calculated by the molarity of the solution. It is defined as the number of moles of solute in 1 L of the solution.
Here, n is number of moles of solute and V is volume of solution in L.
The dissociation constant of the weak acid is calculated by the following formula:
The expression can be written as follows:
The relation between the dissociation constant of acid and the base is given by the following equation-
Here,
Answer to Problem 1E
The concentration of
Explanation of Solution
The chemical equation of this reaction is given below:
The concentration of
Given that-
And,
Put the above values in equation (1)
(c)
Interpretation:
A solution consists propionic acid,
Concept introduction:
The concentration of any solution is calculated by the molarity of the solution. It is defined as the number of moles of solute in 1 L of the solution.
Here, n is number of moles of solute and V is volume of solution in L.
The dissociation constant of the weak acid is calculated by the following formula:
The expression can be written as follows:
Answer to Problem 1E
The concentration of
Explanation of Solution
The chemical equation of this reaction is given below:
Now, the concentration will be calculated by using the following ICE table:
Initial (I) | 0.275 | - | 0 | 0.0892 |
Change (C) | -x | - | +x | +x |
Equilibrium (E) | 0.275-x | - | x | 0.0892+x |
From the ICE table:
Ka = 1.3×10-5
The equation for the Ka is given as
Put the given values in equation (1).
On calculation −
Therefore,
(d)
Interpretation:
A solution consists propionic acid,
Concept introduction:
The dissociation constant of the weak acid is calculated by the following formula:
The expression can be written as follows:
The strong acid dissociates completely in comparison to the weak acid.
Answer to Problem 1E
The concentration of [HI] = 0.0892 M.
Explanation of Solution
The complete dissociation of strong acid occurs in the solution, whereas weak acid is not able to dissociate completely.
From the given question −
Hydroiodic acid, HI = strong acid
The molarity of [HI] or [H3O+] ion = 0.0892 M
As hydroiodic acid is strong acid it will dissociate completely in the solution. Hence, the initial concentration of [HI] = 0.0892 M.
Want to see more full solutions like this?
Chapter 17 Solutions
General Chemistry: Principles and Modern Applications (11th Edition)
Additional Science Textbook Solutions
Human Anatomy & Physiology (2nd Edition)
Campbell Biology (11th Edition)
Cosmic Perspective Fundamentals
Microbiology: An Introduction
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Anatomy & Physiology (6th Edition)
- The emission data in cps displayed in Table 1 is reported to two decimal places by the chemist. However, the instrument output is shown in Table 2. Table 2. Iron emission from ICP-AES Sample Blank Standard Emission, cps 579.503252562 9308340.13122 Unknown Sample 343.232365741 Did the chemist make the correct choice in how they choose to display the data up in Table 1? Choose the best explanation from the choices below. No. Since the instrument calculates 12 digits for all values, they should all be kept and not truncated. Doing so would eliminate significant information. No. Since the instrument calculates 5 decimal places for the standard, all of the values should be limited to the same number. The other decimal places are not significant for the blank and unknown sample. Yes. The way Saman made the standards was limited by the 250-mL volumetric flask. This glassware can report values to 2 decimal places, and this establishes our number of significant figures. Yes. Instrumental data…arrow_forwardSteps and explanation pleasearrow_forwardSteps and explanation to undertand concepts.arrow_forward
- Nonearrow_forward7. Draw a curved arrow mechanism for the following reaction. HO cat. HCI OH in dioxane with 4A molecular sievesarrow_forwardTry: Convert the given 3D perspective structure to Newman projection about C2 - C3 bond (C2 carbon in the front). Also, show Newman projection of other possible staggered conformers and circle the most stable conformation. Use the template shown. F H3C Br Harrow_forward
- Nonearrow_forward16. Consider the probability distribution p(x) = ax", 0 ≤ x ≤ 1 for a positive integer n. A. Derive an expression for the constant a, to normalize p(x). B. Compute the average (x) as a function of n. C. Compute σ2 = (x²) - (x)², the variance of x, as a function of n.arrow_forward451. Use the diffusion model from lecture that showed the likelihood of mixing occurring in a lattice model with eight lattice sites: Case Left Right A B C Permeable Barrier → and show that with 2V lattice sites on each side of the permeable barrier and a total of 2V white particles and 2V black particles, that perfect de-mixing (all one color on each side of the barrier) becomes increasingly unlikely as V increases.arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning