Concept explainers
BIO Steam Burns Versus Water Burns. What is the amount of heat input to your skin when it receives the heat released (a) by 25.0 g of steam initially at 100.0°C, when it is cooled to skin temperature (34.0°C)? (b) By 25.0 g of water initially at 100.0°C, when it is cooled to 34.0°C? (c) What does this tell you about the relative severity of burns from steam versus burns from hot water?
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Additional Science Textbook Solutions
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
Cosmic Perspective Fundamentals
Life in the Universe (4th Edition)
Physics: Principles with Applications
College Physics
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
- (a) The number of kilocalories in food is determined by calorimetry techniques in which the food is burned and the amount of heat transfer is measured. How many kilocalories per gram ale there in a 5.00-g peanut if the energy from burning it is transferred to 0. 500 kg of water held in a 0.100-kg aluminum cup, causing a 54.9- temperature increase? Assume the process takes place in an ideal calorimeter, in other words a perfectly insulated container. (b) Compare your answer to the following labeling information found on a package of dry roasted peanuts: a sewing of 33 g contains 200 calories. Comment on whether the values are consistent.arrow_forwardIn 1986, a gargantuan iceberg broke away from the Ross Ice Shelf in Antarctica. It was approximately a rectangle 160 km long, 40.0 km wide, and 250 m thick. (a) What is the mass of this iceberg, given that the density of ice is 917kg/m3 ? (b) How much heat transfer (in joules) is needed to melt it? (c) How many years would it take sunlight alone to melt ice this thick, if the ice absorbs an average of 100W/m2, 12.00 h per day?arrow_forwardBeryllium has roughly one-half the specific heat of water (H2O). Rank the quantities of energy input required to produce the following changes from the largest to the smallest. In your ranking, note any cases of equality, (a) raising the temperature of 1 kg of H2O from 20C to 26C (b) raising the temperature of 2 kg of H2O from 20C to 23C (c) raising the temperature of 2 kg of H2O from 1C to 4C (d) raising the temperature of 2 kg of beryllium from 1C to 2C (e) raising the temperature of 2 kg of H2O from -1C to 2Carrow_forward
- In 1993, the U.S. government instituted a requirement that all room air conditioners sold in the United States must have an energy efficiency ratio (EER) of 10 or higher. The EER is defined as the ratio of the cooling capacity of the air conditioner, measured in British thermal units per hour, or Btu/h, to its electrical power requirement in watts. (a) Convert the EER of 10.0 to dimensionless form, using the conversion 1 Btu = 1 055 J. (b) What is the appropriate name for this dimensionless quantity? (c) In the 1970s, it was common to find room air conditioners with EERs of 5 or lower. State how the operating costs compare for 10 000-Btu/h air conditioners with EERs of 5.00 and 10.0. Assume each air conditioner operates for 1 500 h during the summer in a city where electricity costs 17.0 per kWh.arrow_forwardAt 25.0 m below the surface of the sea, where the temperature is 5.00C, a diver exhales an air bubble having a volume of 1.00 cm3. If the surface temperature of the sea is 20.0C, what is the volume of the bubble just before it breaks the surface?arrow_forwardConsider the latent heat of fusion and the latent heat of vaporization for H2O, 3.33 105 J/kg and 2.256 106 J/kg, respectively. How much heat is needed to a. melt 2.00 kg of ice and b. vaporize 2.00 kg of water? Assume the temperatures of the ice and steam are at the melting point and vaporization point, respectively. (a). UsingEq21.9, Q = mLF = (2.00 kg) (3.33l05 J/kg) = 6.66105 J (b).UsingEq21.10. Q = mLV = (2.00kg) (2.256106 J/kg) = 14.51106 Jarrow_forward
- A person inhales and exhales 2.00 L of 37.0C air, evaporating 4.00102g of water from the lungs and breathing passages with each breath. (a) How much heat transfer occurs due to evaporation in each breath? (b) What is the rate of heat transfer in watts if the person is breathing at a moderate rate of 18.0 breaths per minute? (c) If the inhaled air had a temperature of 20.0C, what is the rate of heat transfer for warming the air? (d) Discuss the total rate of heat transfer as it relates to typical metabolic rates. Will this breathing be a major form of heat transfer for this person?arrow_forwardAn aluminum rod 0.500 m in length and with a cross-sectional area of 2.50 cm2 is inserted into a thermally insulated vessel containing liquid helium at 4.20 K. The rod is initially at 300 K. (a) If one-half of the rod is inserted into the helium, how many liters of helium boil off by the time the inserted half cools to 4.20 K? Assume the upper half does not yet cool. (b) If the circular surface of the upper end of the rod is maintained at 300 K, what is the approximate boil-off rate of liquid helium in liters per second after the lower half has reached 4.20 K? (Aluminum has thermal conductivity of 3 100 W/m K at 4.20 K; ignore its temperature variation. The density of liquid helium is 125 kg/m3.)arrow_forward(a) Calculate the rate of heat conduction through a double-paned window that has a 150-m2 area and is made of two panes of 0.800 cm-thick glass separated by a 1.00 cm air gap. The inside surface temperature is 15.0 C, while that on the outside is 10.0 OC. (Hint: There are identical temperature drops across the two glass panes. First find these and then the temperature drop across the air gap. This problem ignores the increased heat transfer in the air gap due to convection.) (b) Calculate the rate of heat conduction through a 1.60-cm-thick window of the same area and with the same temperatures. Compare your answer with that for part (a).arrow_forward
- The concrete slab of a basement is 11m long, 8 m wide and 0.2 m thick. During the winter, temperatures are nominally 17°C and 10°C at the top and bottom respectively. If the concrete has thermal conductivity of 1.4 W/m K, what is the rate of heat loss through the slab? If the basement is heated by a gas furnace operating at an efficiency of 90% using natural gas priced at Cg = Php 1.00/MJ, what is the daily cost of heat loss?arrow_forwardThe air temperature above coastal areas is profoundly influenced by the large specific heat of water. One reason is that the energy released when 1 cubic meter of water cools by 1.0°C will raise the temperature of an enormously larger volume of air by 1.0°C. Estimate that volume of air. The specific heat of air is approximately 1.0 kJ/kg ? °C. Take the density of air to be 1.3 kg/m3.arrow_forwardThe concrete slab of a basement is 11 m long and 8 m wide, and 0.20 m thick. During the winter, temperatures are nominally 17°C and 10°C at the top and bottom surfaces, respectively. If the concrete has a thermal conductivity of 1.4 W/mK, what is the rate of heat loss through the slab? If the basement is heated by a gas furnace operation at an efficiency of 90%, and natural gas is priced at $0.02. MJ, what is the daily cost of the heat loss. Answer: QLOSS = 4.312 kW, COST = $8.28/dayarrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning