University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 17.109P
(a)
To determine
The net amount of heat is produced per second by act of jogging.
(b)
To determine
The net rate of heat
(c)
To determine
The total amount of heat produced per second.
(d)
To determine
The total evaporated mass of body per minute.
(e)
To determine
The number of bottles.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 17.1 - You put a thermometer in a pot of hot water and...Ch. 17.2 - Which of the following types of thermometers have...Ch. 17.3 - Prob. 17.3TYUCh. 17.4 - In the bimetallic strip shown in Fig. 17.3a, metal...Ch. 17.5 - Prob. 17.5TYUCh. 17.6 - You take a block of ice at 0C and add heat to it...Ch. 17.7 - A room has one wall made of concrete, one wall...Ch. 17 - Explain why it would not make sense to use a...Ch. 17 - If you heat the air inside a rigid, scaled...Ch. 17 - Many automobile engines have cast-iron cylinders...
Ch. 17 - Why do frozen water pipes burst? Would a mercury...Ch. 17 - Two bodies made of the same material have the same...Ch. 17 - Why is it sometimes possible to loosen caps on...Ch. 17 - The inside of an oven is at a temperature of 200C...Ch. 17 - A newspaper article about the weather states that...Ch. 17 - A student asserts that a suitable unit for...Ch. 17 - Prob. 17.10DQCh. 17 - The units of specific heat c are J/kg K, but the...Ch. 17 - Why is a hot, humid day in the tropics generally...Ch. 17 - A piece of aluminum foil used to wrap a potato for...Ch. 17 - Desert travelers sometimes keep water in a canvas...Ch. 17 - When you first step out of the shower, you feel...Ch. 17 - The climate of regions adjacent to large bodies of...Ch. 17 - When water is placed in ice-cube trays in a...Ch. 17 - Before giving you an injection, a physician swabs...Ch. 17 - A cold block of metal feels colder than a block of...Ch. 17 - A person pours a cup of hot coffee, intending to...Ch. 17 - When a freshly baked apple pie has just been...Ch. 17 - Old-time kitchen lore suggests that things cook...Ch. 17 - In coastal regions in the winter, the temperature...Ch. 17 - It is well known that a potato bakes faster if a...Ch. 17 - Glider pilots in the Midwest know that thermal...Ch. 17 - Some folks claim that ice cubes freeze faster if...Ch. 17 - Were lucky that the earth isnt in thermal...Ch. 17 - Prob. 17.28DQCh. 17 - Convert the following Celsius temperatures to...Ch. 17 - BIO Temperatures in Biomedicine. (a) Normal body...Ch. 17 - Prob. 17.3ECh. 17 - (a) Calculate the one temperature at which...Ch. 17 - You put a bottle of soft drink in a refrigerator...Ch. 17 - Prob. 17.6ECh. 17 - The pressure of a gas at the triple point of water...Ch. 17 - Prob. 17.8ECh. 17 - Prob. 17.9ECh. 17 - Prob. 17.10ECh. 17 - The Humber Bridge in England has the worlds...Ch. 17 - One of the tallest buildings in the world is the...Ch. 17 - A U.S. penny has a diameter of 1.9000 cm at 20.0C....Ch. 17 - Ensuring a Tight Fit. Aluminum rivets used in...Ch. 17 - A copper cylinder is initially at 20.0C. At what...Ch. 17 - A geodesic dome constructed with an aluminum...Ch. 17 - A glass flask whose volume is 1000.00 cm3 at 0.0C...Ch. 17 - A steel tank is completely filled with 1.90 m3 of...Ch. 17 - A machinist bores a hole of diameter 1.35 cm in a...Ch. 17 - As a new mechanical engineer for Engines Inc., you...Ch. 17 - Steel train rails are laid in 12.0-m-long segments...Ch. 17 - A brass rod is 185 cm long and 1.60 cm in...Ch. 17 - An aluminum tea kettle with mass 1.10 kg and...Ch. 17 - In an effort to stay awake for an all-night study...Ch. 17 - Prob. 17.25ECh. 17 - BIO Heat Loss During Breathing. In very cold...Ch. 17 - You are given a sample of metal and asked to...Ch. 17 - On-Demand Water Heaters. Conventional hot-water...Ch. 17 - Prob. 17.29ECh. 17 - Prob. 17.30ECh. 17 - CP A nail driven into a board increases in...Ch. 17 - A technician measures the specific heat of an...Ch. 17 - CP A 15.0-g bullet traveling horizontally at 865...Ch. 17 - You have 750 g of water at 10.0C in a large...Ch. 17 - Prob. 17.35ECh. 17 - BIO Treatment for a Stroke. One suggested...Ch. 17 - A blacksmith cools a 1.20-kg chunk of iron,...Ch. 17 - A copper calorimeter can with mass 0.100 kg...Ch. 17 - A copper pot with a mass of 0.500 kg contains...Ch. 17 - In a container of negligible mass, 0.200 kg of ice...Ch. 17 - Prob. 17.41ECh. 17 - BIO Before going in for his annual physical, a...Ch. 17 - Prob. 17.43ECh. 17 - Prob. 17.44ECh. 17 - How much heat is required to convert 18.0 g of ice...Ch. 17 - An open container holds 0.550 kg of ice at 15.0C....Ch. 17 - CP What must the initial speed of a lead bullet be...Ch. 17 - BIO Steam Burns Versus Water Burns. What is the...Ch. 17 - BIO The Ship of the Desert. Camels require very...Ch. 17 - BIO Evaporation of sweat is an important mechanism...Ch. 17 - CP An asteroid with a diameter of 10 km and a mass...Ch. 17 - A laboratory technician drops a 0.0850-kg sample...Ch. 17 - An insulated beaker with negligible mass contains...Ch. 17 - A 4.00-kg silver ingot is taken from a furnace,...Ch. 17 - A vessel whose walls are thermally insulated...Ch. 17 - Prob. 17.56ECh. 17 - Suppose that the rod in Fig. 17.24a is made of...Ch. 17 - One end of an insulated metal rod is maintained at...Ch. 17 - A carpenter builds an exterior house wall with a...Ch. 17 - An electric kitchen range has a total wall area of...Ch. 17 - BIO Conduction Through the Skin. The blood plays...Ch. 17 - A long rod, insulated to prevent heat loss along...Ch. 17 - A pot with a steel bottom 8.50 mm thick rests on a...Ch. 17 - You are asked to design a cylindrical steel rod...Ch. 17 - A picture window has dimensions of 1.40 m 2.50 m...Ch. 17 - Prob. 17.66ECh. 17 - A spherical pot contains 0.75 L of hot coffee...Ch. 17 - The emissivity of tungsten is 0.350. A tungsten...Ch. 17 - Size of a Light-Bulb Filament. The operating...Ch. 17 - The Sizes of Stars. The hot glowing surfaces of...Ch. 17 - CP A Foucault pendulum consists of a brass sphere...Ch. 17 - Suppose that a steel hoop could be constructed to...Ch. 17 - You propose a new temperature scale with...Ch. 17 - CP CALC A 250-kg weight is hanging from the...Ch. 17 - Prob. 17.75PCh. 17 - A surveyors 30.0-m steel tape is correct at 20.0C....Ch. 17 - A metal rod that is 30.0 cm long expands by 0.0650...Ch. 17 - On a cool (4.0C) Saturday morning, a pilot fills...Ch. 17 - (a) Equation (17.12) gives the stress required to...Ch. 17 - CP A metal wire, with density and Youngs modulus...Ch. 17 - A steel ring with a 2.5000-in. inside diameter at...Ch. 17 - BIO Doughnuts: Breakfast of Champions! Atypical...Ch. 17 - BIO Shivering. Shivering is your bodys way of...Ch. 17 - You cool a 100.0-g slug of red-hot iron...Ch. 17 - CALC Debyes T3 Law. At very low temperatures the...Ch. 17 - CP A person of mass 70.0 kg is sitting in the...Ch. 17 - Hot Air in a Physics Lecture. (a) A typical...Ch. 17 - CALC The molar heat capacity of a certain...Ch. 17 - Prob. 17.89PCh. 17 - BIO Overheating. (a) By how much would the body...Ch. 17 - BIO A Thermodynamic Process in an Insect. The...Ch. 17 - Hot Water Versus Steam Heating. In a household...Ch. 17 - You have 1.50 kg of water at 28.0C in an insulated...Ch. 17 - A thirsty nurse cools a 2.00-L bottle of a soft...Ch. 17 - Prob. 17.95PCh. 17 - A Styrofoam bucket of negligible mass contains...Ch. 17 - In a container of negligible mass, 0.0400 kg of...Ch. 17 - Prob. 17.98PCh. 17 - Effect of a Window in a Door. A carpenter builds a...Ch. 17 - One experimental method of measuring an insulating...Ch. 17 - Compute the ratio of the rate of heat loss through...Ch. 17 - Rods of copper, brass, and steeleach with...Ch. 17 - A brass rod 12.0 cm long, a copper rod 18.0 cm...Ch. 17 - BIO Basal Metabolic Rate. The basal metabolic rate...Ch. 17 - Prob. 17.105PCh. 17 - Prob. 17.106PCh. 17 - A Thermos for Liquid Helium. A physicist uses a...Ch. 17 - A metal sphere with radius 3.20 cm is suspended in...Ch. 17 - Prob. 17.109PCh. 17 - The icecaps of Greenland and Antarctica contain...Ch. 17 - DATA As a physicist, yon put heat into a 500.0-g...Ch. 17 - DATA At a chemical plant where you are an...Ch. 17 - DATA During your mechanical engineering...Ch. 17 - Prob. 17.114CPCh. 17 - A hollow cylinder has length L, inner radius a,...Ch. 17 - You place 35 g of this cryoprotectant at 22C in...Ch. 17 - Careful measurements show that the specific heat...Ch. 17 - In another experiment, you place a layer of this...Ch. 17 - To measure the specific heat in the liquid phase...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why is a person able to remove a piece of dry aluminum foil from a hot oven with bare fingers, whereas a burn results if there is moisture on the foil?arrow_forwardA certain steel railroad rails 13 yd in length and weighs 70.0 lb/yd How much thermal energy is required to increase the length of such a rail by 3.0 mm? .Note: Assume the steel has the same specific heal as iron.arrow_forward(a) The number of kilocalories in food is determined by calorimetry techniques in which the food is burned and the amount of heat transfer is measured. How many kilocalories per gram ale there in a 5.00-g peanut if the energy from burning it is transferred to 0. 500 kg of water held in a 0.100-kg aluminum cup, causing a 54.9- temperature increase? Assume the process takes place in an ideal calorimeter, in other words a perfectly insulated container. (b) Compare your answer to the following labeling information found on a package of dry roasted peanuts: a sewing of 33 g contains 200 calories. Comment on whether the values are consistent.arrow_forward
- Unreasonable Results A meteorite 1.20 cm in diameter is so hot immediately after penetrating the atmosphere that it radiates 20.0 kW of power. (a) What is its temperature, if the surroundings are at 20.0C and it has an emissivity of 0.800? (b) What is unreasonable about this result? (c) Which premise or assumption is responsible?arrow_forwardIn cold climates, including the northern United States, a house can be built with very large windows facing south to take advantage of solar heating. Sunlight shining in during the daytime is absorbed by the floor, interior walls, and objects in the room, raising their temperature to 38.0C. If the house is well insulated, you may model it as losing energy by heat steadily at the rate 6 000 W on a day in April when the average exterior temperature is 4C and when the conventional heating system is not used at all. During the period between 5:00 p.m. and 7:00 a.m., the temperature of the house drops and a sufficiently large "thermal mass" is required to keep it from dropping too far. The thermal mass can be a large quantity of stone (with specific heat 850 J/kg C) in the floor and the interior walls exposed to sunlight. What mass of stone is required if the temperature is not to drop below 18.0C overnight?arrow_forward(a) How much heat must be added to raise the temperature of 1.5 mol of air 25.0 to 33.0 at constant volume? Assume air is completely diatomic. (b) Repeat the problem for the same number of moles of xenon, Xe.arrow_forward
- (a) A woman climbing the Washington Monument metabolizes 6.00102kJ of food energy. If her efficiency is 18.0%, how much heat transfer occurs to the environment to keep her temperature constant? (b) Discuss the amount of heat transfer found in (a). Is it consistent with the fact that you quickly warm up when exercising?arrow_forwardIn an air conditioner, 12.65 MJ of heat transfer occurs from a cold environment in 1.00 h. (a) What mass of ice melting would involve the same heat transfer? (b) How many hours of operation would be equivalent to mailing 900 kg of ice? (c) If ice costs 20 cents per kg, do you think the air conditioner could be operated more cheaply than by simply using ice? Describe in detail how you evaluate the relative costs.arrow_forwardBeryllium has roughly one-half the specific heat of water (H2O). Rank the quantities of energy input required to produce the following changes from the largest to the smallest. In your ranking, note any cases of equality, (a) raising the temperature of 1 kg of H2O from 20C to 26C (b) raising the temperature of 2 kg of H2O from 20C to 23C (c) raising the temperature of 2 kg of H2O from 1C to 4C (d) raising the temperature of 2 kg of beryllium from 1C to 2C (e) raising the temperature of 2 kg of H2O from -1C to 2Carrow_forward
- Unreasonable Results (a) What is the temperature increase of an 80.0 kg person who consumes 2500 kcal of food in one day with 95.0% of the energy transferred as heat to the body? (b) What is unreasonable about this result? (c) Which premise or assumption is responsible?arrow_forward(a) How long will the energy in a 1470kJ (350kcal) cup of yogurt last in a woman doing work at the rate of 150 W with an efficiency of 20.0% (such as in leisurely climbing stairs)? (b) Does the time found in part (a) imply that it is easy to consume more food energy than you can reasonably expect to work off with exercise?arrow_forwardConsider the latent heat of fusion and the latent heat of vaporization for H2O, 3.33 105 J/kg and 2.256 106 J/kg, respectively. How much heat is needed to a. melt 2.00 kg of ice and b. vaporize 2.00 kg of water? Assume the temperatures of the ice and steam are at the melting point and vaporization point, respectively. (a). UsingEq21.9, Q = mLF = (2.00 kg) (3.33l05 J/kg) = 6.66105 J (b).UsingEq21.10. Q = mLV = (2.00kg) (2.256106 J/kg) = 14.51106 Jarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning