A metal sphere with radius 3.20 cm is suspended in a large metal box with interior walls that are maintained at 30.0°C. A small electric heater is embedded in the sphere. Heat energy must be supplied to the sphere at the rate of 0.660 J/s to maintain the sphere at a constant temperature of 41.0°C. (a) What is the emissivity of the metal sphere? (b) What power input to the sphere is required to maintain it at 82.0°C? What is the ratio of the power required for 82.0°C to the power required for 41.0°C? How does this ratio compare with 24? Explain.
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Additional Science Textbook Solutions
College Physics (10th Edition)
Physics (5th Edition)
Applied Physics (11th Edition)
University Physics Volume 2
Conceptual Integrated Science
An Introduction to Thermal Physics
- (a) The inside of a hollow cylinder is maintained at a temperature Ta, and the outside is at a lower temperature, Tb (Fig. P19.45). The wall of the cylinder has a thermal conductivity k. Ignoring end effects, show that the rate of energy conduction from the inner surface to the outer surface in the radial direction is dQdt=2Lk[TaTbln(b/a)] Suggestions: The temperature gradient is dT/dr. A radial energy current passes through a concentric cylinder of area 2rL. (b) The passenger section of a jet airliner is in the shape of a cylindrical tube with a length of 35.0 m and an inner radius of 2.50 m. Its walls are lined with an insulating material 6.00 cm in thickness and having a thermal conductivity of 4.00 105 cal/s cm C. A heater must maintain the interior temperature at 25.0C while the outside temperature is 35.0C. What power must be supplied to the heater? Figure P19.45arrow_forward(a) Calculate the rate of heat conduction through a double-paned window that has a 150-m2 area and is made of two panes of 0.800 cm-thick glass separated by a 1.00 cm air gap. The inside surface temperature is 15.0 C, while that on the outside is 10.0 OC. (Hint: There are identical temperature drops across the two glass panes. First find these and then the temperature drop across the air gap. This problem ignores the increased heat transfer in the air gap due to convection.) (b) Calculate the rate of heat conduction through a 1.60-cm-thick window of the same area and with the same temperatures. Compare your answer with that for part (a).arrow_forwardA thermal window, with an area of 6.0m ^ 2, is constructed of two layers of glass, each 4.0mm thick, separated from each other by a 5.0mm air gap. If the inner surface is at 20.0 ° C and the outer surface is at -5.0 ° C, what is the rate of energy transfer by conduction through the window? The thermal conductivity of glass is 0.8 W⁄ (m. ° C) and that of air is 0.023 W⁄ (m. ° C)arrow_forward
- A rod made of glass has a circular cross section with a diameter of 0.1200 m at a temperature of 20 degrees celsius. An aluminum ring has a diameter of 0.1196 m at a temperature of 20 degrees celsius. The coefficients of thermal expansion for glass and aluminum are 9.0 x 10-6 1/K and 24.0 x 10-6 1/K, respectively. At what temperature will the aluminum ring be able to slip over the glass rod? Between 225 and 250 degrees celsius Between 175 and 200 degrees celsius Between 100 and 125 degrees celsius Higher than 300 degrees celsius Between 250 and 275 degrees celsius Between 125 and 150 degrees celsius Between 275 and 300 degrees celsius Between 150 and 200 degrees celsius O Between 200 and 225 degrees celsiusarrow_forwardA solid sphere with radius 3.50 cm is suspended within a large, evacuated enclosure whose walls are at 300.0 K. A power input of 4500.0 W is required to maintain the sphere at 3000.0 K. If heat conduction along the supports is ignored, what is the emissivity of the sphere? (no units) Note: Your answer is assumed to be reduced to the highest power possible. Your Answer: Answer x10arrow_forwardThe 10 m long pipe has an inner radius of 70 mm, an outer radius of 80 mm, and is made of stainless steel (k = 15 W / [m ° C]). The temperature of the inner surface is maintained at 150 ° C, and the outer surface is 30 ° C. At constant conditions and there is no heat generation from the pipe, calculate the heat transfer rate that occurs in the pipe wall. = Answer watt.arrow_forward
- A spherical deep-space probe has a diameter of 65.0 cm. Inside the probe, electronic components steadily dissipate 450 W of power. The emissivity of the probe's surface is 0.80. Calculate the surface temperature of the probe. Assume that there are no radiative heat sources or surfaces near the probe and that the 450 W of power is distributed uniformly over the surface of the probe.arrow_forwardAt a chemicalplant where you are an engineer,a tank contains an unknownliquid. You must determine theliquid’s specific heat capacity. Youput 0.500 kg of the liquid into aninsulated metal cup of mass 0.200 kg. Initially the liquid and cup are at20.0°C. You add 0.500 kg of water that has a temperature of 80.0°C. Afterthermal equilibrium has been reached, the final temperature of the twoliquids and the cup is 58.1°C. You then empty the cup and repeat the experimentwith the same initial temperatures, but this time with 1.00 kg ofthe unknown liquid. The final temperature is 49.3°C. Assume that the specificheat capacities are constant over the temperature range of the experimentand that no heat is lost to the surroundings. Calculate the specificheat capacity of the liquid and of the metal from which the cup is made.arrow_forwardYou drop an ice cube into an insulated flask full of water and wait for the ice cube to completely melt. The ice cube initially has a mass of 90.0 g and a temperature of 0°C. The water (before the ice cube is added) has a mass of 890 g and an initial temperature of 24.0°C. What is the final temperature (in °C) of the mixture? (Assume no energy is lost to the walls of the flask, or to the environment.) °Carrow_forward
- Water enters at 20 ℃ at a rate of 0.2 kg/s in a double-pipe parallel flow heat exchanger is to be heated to 80 ℃ by geothermal water that enters the heat exchanger at 160 ℃ at a rate of 0.3 kg/s. The overall heat transfer coefficient of the heat exchanger is 600 W/m2. ℃. The internal diameter of the tube is 1.4 cm. Determine the length of the heat exchanger. The specific heats of the water and geothermal water are given to be 4.18 and 4.31 kJ/kg.℃, respectively. Select one: a. 27.5 m b. 20.7 m c. 30.5 m d. 23.5 marrow_forwardSteam in a heating system flows through tubes whose outer diameter is 3 cm and whose walls are maintained at a temperature of 120°C. Circular aluminum alloy fins (k = 180 W/m·K) of outer diameter 6 cm and constant thickness t = 2 mm are attached to the tube. The space between the fins is 3 mm, and thus there are 200 fins per meter length of the tube. Heat is transferred to the surrounding air at 25°C, with a combined heat transfer coefficient of 60 W/m2·K. Determine the increase in heat transfer from the tube per meter of its length as a result of adding fins.arrow_forwardTwo tanks are connected by a valve. One tank contains 2.5 kg of nitrogen gas with the temperature and pressure of 100 °C and 80 kPa, respectively. The other tank contains 12 kg of the same gas at 30 °C and 1200 kPa. The valve is opened and the gases are allowed to mix the receiving energy by heat transfer to the surroundings. The final temperature is 48 °C. Determine the final equilibrium pressure.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning