ENGINEERING CIRCUIT...(LL)>CUSTOM PKG.<
ENGINEERING CIRCUIT...(LL)>CUSTOM PKG.<
9th Edition
ISBN: 9781260540666
Author: Hayt
Publisher: MCG CUSTOM
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 17, Problem 15E
To determine

Sketch the line spectrum for the waveform shown in Figure 17.31.

Expert Solution & Answer
Check Mark

Answer to Problem 15E

The line spectrum for the given waveform is sketched as shown in Figure 1.

Explanation of Solution

Given data:

Refer to Figure 17.31 in the textbook.

Formula used:

Write the general expression for Fourier series expansion.

f(t)=a0+n=1(ancosnω0t+bnsinnω0t)        (1)

Write the general expression for Fourier series coefficient a0.

a0=1T0Tf(t)dt        (2)

Write the general expression for Fourier series coefficient an.

an=2T0Tf(t)cosnω0tdt        (3)

Write the general expression for Fourier series coefficient bn.

bn=2T0Tf(t)sinnω0tdt        (4)

Write the expression to calculate the fundamental angular frequency.

ω0=2πT=2πf0        (5)

Here,

T is the period of the function.

Calculation:

In the given Figure 17.31, the time period is T=0.4.

The function v(t) for the given waveform is,

v(t)={Vmcos5πt,0.1t0.10,0.1t0.3        (6)

Substitute 0.4 for T in equation (5) to find ω0.

ω0=2π0.4

ω0=5π        (7)

Applying equation (6) in equation (2) to find a0 as follows,

a0=10.400.4v(t)dt=10.4[0.10.1Vmcos5πtdt+0.10.3(0)dt+]=Vm0.4[sin5πt5π]0.10.1=Vm0.4[sin5π(0.1)5πsin5π(0.1)5π]=Vm0.4[1+15π]

Simplify the above equation as follows,

a0=Vmπ

For half wave symmetry and even symmetry,

For all values of ‘n’, bn=0.

Applying equation (6) in equation (3) to find the value of coefficient an.

an=20.400.4v(t)cosnω0tdt

an=2Vm0.4[0.10.1cos(5πt)cos(5πnt)dt]{ω0=5π}        (8)

Consider the function,

x=cos(5πt)cos(5πnt)dt

Consider,

u=5πt

On differentiating the above expression,

dudt=5πdt=du5π

Equation (8) will be follows,

x=15πcos(u)cos(nu)du        (9)

In the above equation, consider,

y=cos(u)cos(nu)du=cos(nu+u)+cos(nuu)2du{cos(x)cos(y)=12[cos(y+x)+cos(yx)]}=cos((n+1)u)+cos((n1)u)2du

By applying linearity,

y=12cos((n+1)u)du+12cos((n1)u)du        (10)

In equation (10),

consider,

m=cos((n+1)u)du        (11)

Let,

v=(n+1)udvdu=(n+1)du=dvn+1

Equation (11) will be as follows,

m=1n+1cos(v)dv=sin(v)n+1=sin((n+1)u)n+1{v=(n+1)u}

Similarly, in equation (10),

consider,

l=cos((n1)u)du        (12)

Let,

v=(n1)udvdu=(n1)du=dvn1

Equation (12) will be as follows,

l=1n1cos(v)dv=sin(v)n1=sin((n1)u)n1v=(n1)u

Substitute the values of m and l in equation (10) as follows,

y=12[sin((n+1)u)n+1+sin((n1)u)n1]=sin((n+1)u)2(n+1)+sin((n1)u)2(n1)

Substitute the value of y in equation (9) as follows,

x=15π[sin((n+1)u)2(n+1)+sin((n1)u)2(n1)]=sin((n+1)u)10π(n+1)+sin((n1)u)10π(n1)=sin(5π(n+1)t)10π(n+1)+sin(5π(n1)t)10π(n1){u=5πt}

Therefore,

cos(5πt)cos(5πnt)dt=sin(5π(n+1)t)10π(n+1)+sin(5π(n1)t)10π(n1)=(n1)sin(5π(n+1)t)+(n+1)sin(5π(n1)t)10π(n21)

On applying the limits,

0.10.1cos(5πt)cos(5πnt)dt=[(n1)sin(5π(n+1)t)+(n+1)sin(5π(n1)t)10π(n21)]0.10.1=[(n1)sin(5π(n+1)(0.1))+(n+1)sin(5π(n1)(0.1))10π(n21)][(n1)sin(5π(n+1)(0.1))+(n+1)sin(5π(n1)(0.1))10π(n21)]=[(n1)sin(nπ+π2)+(n+1)sin(nππ2)10π(n21)][(n1)sin(nπ+π2)(n+1)sin(nππ2)10π(n21)]=[(n1)sin(nπ+π2)+(n+1)sin(nππ2)10π(n21)]+[(n1)sin(nπ+π2)+(n+1)sin(nππ2)10π(n21)]

Simplify the equation as follows,

0.10.1cos(5πt)cos(5πnt)dt=2[(n1)sin(nπ+π2)+(n+1)sin(nππ2)]10π(n21)=2[(n1)sin(nπ2+π2)+(n+1)sin(nπ2π2)]10π(n21)=2[(n1)cos(nπ2)(n+1)cos(nπ2)]10π(n21){sin(90+θ)=cosθ,sin(θ)=sinθ}=2[ncos(nπ2)cos(nπ2)(n+1)cos(nπ2)]10π(n21)

Simplify the equation as follows,

0.10.1cos(5πt)cos(5πnt)dt=2[ncos(nπ2)cos(nπ2)(n+1)cos(nπ2)]10π(n21){cos(θ)=cosθ}=2[ncos(nπ2)cos(nπ2)ncos(nπ2)cos(nπ2)]10π(n21)=2[2cos(nπ2)]10π(n21)=2cos(nπ2)5π(n21)

Substitute the value of 0.10.1cos(5πt)cos(5πnt)dt in equation (8) as follows,

an=2Vm0.4[2cos(nπ2)5π(n21)]=2Vmcos(nπ2)π(n21)

an=2Vmπcos(nπ2)(1n2)(n1)

Converting the equation (1) which is in angular frequency into frequency.

v(t)=a0+n=1(ancosnf0t+bnsinnf0t)        (13)

Substitute the value of a0, an, and bn in equation (13) as follows,

v(t)=Vmπ+n=1((2Vmπ)(cos(nπ2)1n2)cosn(5π2π)t+0){f0=ω02π,ω0=5π}=Vmπ+n=1((2Vmπ)(cos(nπ2)1n2)cosn(52)t)

By considering Vm=1V, the above equation will be as follows,

v(t)=1π+n=1((2π)(cos(nπ2)1n2)cosn(52)t)        (14)

For n=0, the equation (14) will be as follows,

v(t)=1π

For n=2, the equation (14) will be as follows,

v(t)=1π+(2π)(cos(2π2)1(2)2)cos(2)(52)t=1π+(2π)(13)cos(5)t=1π+(2π)(13)cos(5)t=1π+0.2cos5t

The sketch for the line spectrum is shown in Figure 1.

ENGINEERING CIRCUIT...(LL)>CUSTOM PKG.<, Chapter 17, Problem 15E

Conclusion:

Thus, the line spectrum for the given waveform is sketched as shown in Figure 1.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
No chatgpt pls will upvote
circuit find value of VAB using Super Position Theorem
dc circuit vth rth rl thevenin and then maximum transer and value of rl

Chapter 17 Solutions

ENGINEERING CIRCUIT...(LL)>CUSTOM PKG.<

Ch. 17.6 - Prob. 11PCh. 17.7 - Prob. 12PCh. 17.7 - Prob. 13PCh. 17.8 - Find (a) F5sin23t); (b) FAsin20t); (c)...Ch. 17.9 - Prob. 15PCh. 17.10 - Prob. 16PCh. 17 - Determine the fundamental frequency, fundamental...Ch. 17 - Plot multiple periods of the first, third, and...Ch. 17 - Calculate a0 for the following: (a) 4 sin 4t; (b)...Ch. 17 - Prob. 4ECh. 17 - Prob. 5ECh. 17 - Prob. 6ECh. 17 - Prob. 7ECh. 17 - With respect to the periodic waveform sketched in...Ch. 17 - Prob. 9ECh. 17 - Prob. 10ECh. 17 - A half-sinusoidal waveform is shown in Fig. 17.31,...Ch. 17 - Plot the line spectrum (limited to the six largest...Ch. 17 - Prob. 13ECh. 17 - Prob. 14ECh. 17 - Prob. 15ECh. 17 - Prob. 16ECh. 17 - Prob. 17ECh. 17 - Prob. 18ECh. 17 - The nonperiodic waveform g(t) is defined in Fig....Ch. 17 - Prob. 20ECh. 17 - Prob. 21ECh. 17 - Prob. 22ECh. 17 - Prob. 23ECh. 17 - Prob. 24ECh. 17 - Prob. 25ECh. 17 - Prob. 26ECh. 17 - Prob. 27ECh. 17 - Prob. 28ECh. 17 - Prob. 29ECh. 17 - Prob. 30ECh. 17 - Prob. 31ECh. 17 - Prob. 32ECh. 17 - Prob. 33ECh. 17 - Prob. 34ECh. 17 - Prob. 35ECh. 17 - Prob. 36ECh. 17 - Use the Fourier transform to obtain and plot the...Ch. 17 - Prob. 38ECh. 17 - Prob. 39ECh. 17 - Prob. 40ECh. 17 - For g(t) = 3etu(t), calculate (a) G(j); (b) ().Ch. 17 - Prob. 42ECh. 17 - Prob. 43ECh. 17 - Prob. 44ECh. 17 - Prob. 45ECh. 17 - Prob. 46ECh. 17 - Find F(j) if f(t) is given by (a) 2 cos 10t; (b)...Ch. 17 - Prob. 48ECh. 17 - Prob. 49ECh. 17 - Prob. 50ECh. 17 - Prob. 51ECh. 17 - Prob. 52ECh. 17 - Prob. 53ECh. 17 - If a system is described by transfer function h(t)...Ch. 17 - Prob. 55ECh. 17 - (a) Design a noninverting amplifier having a gain...Ch. 17 - Prob. 57ECh. 17 - Prob. 58ECh. 17 - Prob. 59ECh. 17 - Prob. 60ECh. 17 - Prob. 61ECh. 17 - Prob. 62ECh. 17 - Design an audio amplifier with gain of 10, using...
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Intro to FOURIER SERIES: The Big Idea; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=wmCIrpLBFds;License: Standard Youtube License