
Concept explainers
Sketch the line spectrum for the waveform shown in Figure 17.4c (limited to the five largest terms).

Answer to Problem 14E
The line spectrum for the waveform shown in Figure 17.4c is sketched as shown in Figure 1.
Explanation of Solution
Given data:
Refer to Figure 17.4c in the textbook.
Formula used:
Write the general expression for Fourier series expansion.
Write the general expression for Fourier series coefficient
Write the general expression for Fourier series coefficient
Write the general expression for Fourier series coefficient
Write the expression to calculate the fundamental angular frequency.
Here,
Calculation:
In the given Figure 17.4a, the time period is
The function
Substitute 2 for T in equation (5) to find
Applying equation (6) in equation (2) to find
Simplify the above equation as follows,
As the given function is an odd symmetry. Therefore,
Applying equation (6) in equation (4) to finding the Fourier coefficient
Equation (8) is simplified as,
Therefore, equation (8) becomes,
Consider the function,
Consider the following integration formula.
Compare the equations (10) and (11) to simplify the equation (10).
Using the equation (11), the equation (10) can be reduced as,
Simplify the above equation as follows,
Consider the function,
Compare the equations (12) and (11) to simplify the equation (12).
Using the equation (11), the equation (12) can be reduced as,
Simplify the above equation as follows,
Substituting the values of x and y in equation (9) as follows,
Converting the equation (1) which is in angular frequency into frequency.
Substitute the values of
For
For
The sketch for the line spectrum of
Conclusion:
Thus, the line spectrum for the waveform shown in Figure 17.4c is sketched as shown in Figure 1.
Want to see more full solutions like this?
Chapter 17 Solutions
ENGINEERING CIRCUIT...(LL)>CUSTOM PKG.<
- 1) The parameters for circuit in Figure 1 are ẞ₁ = 120, B2=80, VBE1 (On) = VBE2 (on) = 0.7 V and VA1 = VA2 = ∞0. a) Find the collector current in each transistor. b) Find the small signal voltage gain Av = Vo/Vs. c) Find the I/O resistance. Rib 5V. Figure 1 Q₁ 0.5 k Vcc=9V Q2 R ww 50 Ωarrow_forward3) In the circuit in Figure 3, the Transistor parameters are VTN = 0.8 V and Kn = 0.5 mA/V2. Calculate ID, VGS, and VDS. VDD = 10 V Κ = 32 ΚΩ Κρ=4ΚΩ R2 = 18 ΚΩ Rs = 2k Figure 3arrow_forward2) Consider the circuit in Figure 2, The transistor parameters are VTP = -0.8 V and Kp = 0.5 mA/V2. Determine ID, VSG and VSD.arrow_forward
- For the circuit shown, let V₁ = 12 V, Is1 = 2A, Is2 = 4A, R₁ = 2, R2 = 4, and R3 = 6. Determine the current Io using Mesh method as follows: 1. Choose all meshes that must be included, if any, to construct the supermesh. 11, 13 O 11, 12 O 12, 13, 11 12, 13 O none of the above 2. Consider mesh (loop) iz, write the corresponding expression in terms of mesh currents i₁, 12, 13 as of the form (R11 · i₁ + R₁2 · 2 + R₁3-13 = V₁), then enter the corresponding values: R11 R12 R13 Ω Ω Ω V V₁₂ 3. Solve the above equation to determine then lo : 10 = Ist A R₁ ww ww R₂ + V₁ 1, R3 The relative tolerance for this problem is 7%. ww IS2arrow_forwardEnter the matrix values (numerical) to solve for mesh-currents i₁, iz and 13, for the circuit shown, using Mesh method. In the matrix, row 1, row 2, and row 3 correspond to i₁, 12 and 13, current expressions, respectively. Let Vs=15, R₁ =50, R₂-32, R3-8, R4-17, R5-29, and R=41. [R11 R12 R13 The matrix values are shown here: R21 R22 R23 = V₂ R31 R32 R33 [V3] The relative tolerance for this problem is 5%. R1 Loop i₁ R11 + Vs Ω R12 Ω R13 Ω V V₁= Loop 12 R21 Ω R22 Ω R23 Ω V V₂ Loop 13 Ω R31 R32 Ω R33 Ω V3= V R2 R4 R3 R5 R6arrow_forwardFor circuit shown, use Mesh method to find the voltage Vo as follows. Enter, in the matrix format, as below, the loop currents, where row 1, and row 2, correspond to i₁, and i2 loop current expressions, respectively. Let Vs1-5, Vs2-15, R₁=5, R₂=2, and R3=8. The matrix values are shown here: [R11 R12 21 R21 R22 Rx - M - M iz = The relative tolerance for this problem is 5%. Vst (+- R1 ww Loop i₁ R115 G12 V₁ = Loop 12 R21 R22 V₂= Ω C C Ω V Ω 02 C V R₂ ww VS2 + Ry ww + Vo Use Cramer's rule (matrix), substitution, or any other method to calculate the voltages:arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,





