ENGINEERING CIRCUIT...(LL)>CUSTOM PKG.<
ENGINEERING CIRCUIT...(LL)>CUSTOM PKG.<
9th Edition
ISBN: 9781260540666
Author: Hayt
Publisher: MCG CUSTOM
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 17, Problem 8E

With respect to the periodic waveform sketched in Fig. 17.30, let gn(t) represent the Fourier series representation of f(t) truncated at n. [For example, if n = 1, g1(t) has three terms, defined through a0, a1 and b1.] (a) Sketch g2(t), g3(t), and g5(t), along with f(t). (b) Calculate f (2.5), g2(2.5), g3(2.5), and g5(2.5).

Chapter 17, Problem 8E, With respect to the periodic waveform sketched in Fig. 17.30, let gn(t) represent the Fourier series

■ FIGURE 17.30

(a)

Expert Solution
Check Mark
To determine

Sketch g2(t), g3(t), and g5(t) for the periodic waveform f(t) shown in Figure 17.30.

Answer to Problem 8E

The sketch for g2(t), g3(t), g5(t) is drawn as shown in Figure 1, and the sketch for f(t) is drawn as shown in Figure 2, and the sketch for g2(t), g3(t), and g5(t) along with f(t) is drawn as shown in Figure 3.

Explanation of Solution

Given data:

Refer to Figure 17.30 in the textbook.

Formula used:

Write the general expression for Fourier series expansion.

f(t)=a0+n=1(ancosnω0t+bnsinnω0t)        (1)

Write the general expression for Fourier series coefficient a0.

a0=1T0Tf(t)dt        (2)

Write the general expression for Fourier series coefficient an.

an=2T0Tf(t)cosnω0tdt        (3)

Write the general expression for Fourier series coefficient bn.

bn=2T0Tf(t)sinnω0tdt        (4)

Write the expression to calculate the fundamental angular frequency.

ω0=2πT=2πf0        (5)

Here,

T is the period of the function.

Calculation:

In the given Figure 17.29, the time period is T=6.

Substitute 6 for T in equation (5) to find ω0.

ω0=2π6

ω0=π3        (6)

Substitute 6 for T in equation (2) to find the value of coefficient a0.

a0=1606f(t)dt=16[02(0)dt+2310dt+360dt]=16[0+10[t]23+0]=16[10[32]]

Simplify the above equation as follows,

a0=106=1.667

Substitute 6 for T in equation (3) to find the value of coefficient an.

an=2606f(t)cosnω0tdt=26[02(0)cosnω0tdt+23(1)cosnω0tdt+36(0)cosnω0tdt]=26[0+[sinnω0tnω0]23+0]=26[sin3nω0nω0sin2nω0nω0]

The above equation as follows,

an=26nω0[sin3nω0sin2nω0]        (7)

Substitute equation (6) in equation (7) as follows,

an=26n(π3)[sin3n(π3)sin2n(π3)]        (8)

Now finding the Fourier coefficient bn.

Substitute 6 for T in equation (4) to find the value of coefficient bn.

bn=2606f(t)sinnω0tdt=26[02(0)sinnω0tdt+23(1)sinnω0tdt+36(0)sinnω0tdt]=26[0+[cosnω0tnω0]23+0]=26[cos3nω0nω0+cos2nω0nω0]

The above equation as follows,

bn=26nω0[cos2nω0cos3nω0]        (9)

Substitute equation (6) in equation (9) as follows,

bn=26n(π3)[cos2n(π3)cos3n(π3)]        (10)

Substituting the value of a0, an, and bn in equation (1) as follows,

f(t)=1.667+n=1(26n(π3)[sin3n(π3)sin2n(π3)]cosn(π3)t)+n=1(26n(π3)[cos2n(π3)cos3n(π3)]sinn(π3)t){ω0=π3}        (11)

The function gn(t) represent the Fourier series representation of f(t) truncated at n.

For n=2,

g2(t)=f(t) have the Fourier coefficients ao, a1, a2 and b1, b2.

Therefore, equation (11) will be as follows,

g2(t)=1.667+(26(1)(π3)[sin3(1)(π3)sin2(1)(π3)]cos(1)(π3)t)+(26(1)(π3)[cos2(1)(π3)cos3(1)(π3)]sin(1)(π3)t)+(26(2)(π3)[sin3(2)(π3)sin2(2)(π3)]cos(2)(π3)t)+(26(2)(π3)[cos2(2)(π3)cos3(2)(π3)]sin(2)(π3)t)

Simplify the above equation as follows,

g2(t)=1.667+(22(π)[sin(π)sin(2π3)]cos(π3)t)+(22(π)[cos(2π3)cos(π)]sin(π3)t)+(12π[sin(2π)sin(4π3)]cos(2π3)t)+(12π[cos(4π3)cos(2π)]sin(2π3)t)=1.667+(1π[00.866]cos(π3)t)+{sinπ=0,cosπ=1}(1π[0.5+1]sin(π3)t)+(12π[0(0.866)]cos(2π3)t)+(12π[0.51]sin(2π3)t)

g2(t)=1.6670.275cos(π3)t+0.159sin(π3)t+0.137cos(2π3)t0.238sin(2π3)t        (12)

Similarly, for n=3,

g3(t)=f(t) have the Fourier coefficients ao, a1, a2, a3 and b1, b2, b3.

Therefore, equation (11) will be as follows,

g3(t)=1.667+(26(1)(π3)[sin3(1)(π3)sin2(1)(π3)]cos(1)(π3)t)+(26(1)(π3)[cos2(1)(π3)cos3(1)(π3)]sin(1)(π3)t)+(26(2)(π3)[sin3(2)(π3)sin2(2)(π3)]cos(2)(π3)t)+(26(2)(π3)[cos2(2)(π3)cos3(2)(π3)]sin(2)(π3)t)+(26(3)(π3)[sin3(3)(π3)sin2(3)(π3)]cos(3)(π3)t)+(26(3)(π3)[cos2(3)(π3)cos3(3)(π3)]sin(3)(π3)t)

From equation (12), the above equation is written as,

g3(t)=1.6670.275cos(π3)t+0.159sin(π3)t+0.137cos(2π3)t0.238sin(2π3)t+(26(3)(π3)[sin3(3)(π3)sin2(3)(π3)]cos(3)(π3)t)+(26(3)(π3)[cos2(3)(π3)cos3(3)(π3)]sin(3)(π3)t)=1.6670.275cos(π3)t+0.159sin(π3)t+0.137cos(2π3)t0.238sin(2π3)t+(13π[sin(3π)sin(2π)]cos(π)t)+(13π[cos(2π)cos(3π)]sin(π)t)=1.6670.275cos(π3)t+0.159sin(π3)t+0.137cos(2π3)t0.238sin(2π3)t+(13π[00]cos(π)t)+(13π[1+1]sin(π)t)

g3(t)=1.6670.275cos(π3)t+0.159sin(π3)t+0.137cos(2π3)t0.238sin(2π3)t+0.212sin(π)t        (13)

Similarly, for n=5,

g5(t)=f(t) have the Fourier coefficients ao, a1, a2, a3, a4, a5 and b1, b2, b3, b4, b5.

Therefore, equation (11) will be as follows,

g5(t)=1.667+(26(1)(π3)[sin3(1)(π3)sin2(1)(π3)]cos(1)(π3)t)+(26(1)(π3)[cos2(1)(π3)cos3(1)(π3)]sin(1)(π3)t)+(26(2)(π3)[sin3(2)(π3)sin2(2)(π3)]cos(2)(π3)t)+(26(2)(π3)[cos2(2)(π3)cos3(2)(π3)]sin(2)(π3)t)+(26(3)(π3)[sin3(3)(π3)sin2(3)(π3)]cos(3)(π3)t)+(26(3)(π3)[cos2(3)(π3)cos3(3)(π3)]sin(3)(π3)t)+(26(4)(π3)[sin3(4)(π3)sin2(4)(π3)]cos(4)(π3)t)+(26(4)(π3)[cos2(4)(π3)cos3(4)(π3)]sin(4)(π3)t)(26(5)(π3)[sin3(5)(π3)sin2(5)(π3)]cos(5)(π3)t)+(26(5)(π3)[cos2(5)(π3)cos3(5)(π3)]sin(5)(π3)t)

From equation (13), the above equation is written as,

g5(t)=1.6670.275cos(π3)t+0.159sin(π3)t+0.137cos(2π3)t0.238sin(2π3)t+0.212sin(π)t+(14π[sin(4π)sin(8π3)]cos(4π3)t)+(14π[cos(8π3)cos(4π)]sin(4π3)t)+(15π[sin(5π)sin(10π3)]cos(5π3)t)+(15π[cos(10π3)cos(5π)]sin(5π3)t)=1.6670.275cos(π3)t+0.159sin(π3)t+0.137cos(2π3)t0.238sin(2π3)t+0.212sin(π)t+(14π[00.866]cos(4π3)t)+(14π[0.51]sin(4π3)t)+(15π[0+0.866]cos(5π3)t)+(15π[0.5+1]sin(5π3)t)

g5(t)=1.6670.275cos(π3)t+0.159sin(π3)t+0.137cos(2π3)t0.238sin(2π3)t+0.212sin(π)t0.069cos(4π3)t0.119sin(4π3)t+0.055cos(5π3)t+0.0318sin(5π3)t

MATLAB code to sketch for g2(t), g3(t), and g5(t):

t=-5:0.01:5;

g2=1.667-0.275*cos(3.141*t/3)+0.159*sin(3.141*t/3)+0.137*cos(2*3.141*t/3)-0.238*sin(2*3.141*t/3);

g3=1.667-0.275*cos(3.141*t/3)+0.159*sin(3.141*t/3)+0.137*cos(2*3.141*t/3)-0.238*sin(2*3.141*t/3)+0.212*sin(pi*t);

g5=1.667- 0.275*cos(3.141*t/3)+0.159*sin(3.141*t/3)+0.137*cos(2*3.141*t/3)-0.238*sin(2*3.141*t/3)+0.212*sin(pi*t)-0.069*cos(4*pi*t/3)-0.119*sin(4*pi*t/3)+0.055*cos(5*pi*t/3)+0.0318*sin(5*pi*t/3);

plot(t,g2,t,g3,t,g5)

legend({'g2','g3','g5'},'Location','best')

xlabel('Time t in sec')

ylabel('The values g2, g3, and g5')

title('Plots for g2,g3, and g5')

MATLAB output: The MATLAB output shown in Figure 1.

ENGINEERING CIRCUIT...(LL)>CUSTOM PKG.<, Chapter 17, Problem 8E , additional homework tip  1

MATLAB code to sketch for f(t):

t=linspace(-5,5,1000); % vector for time over 1000 points.

T=6; % Period

w0=2*pi/T; % natural frequency, is w0=2*pi.

f0=1.667; % constant.

N=40;

for i=1:1000;

sum=0;   

    for n=1:N;     

      sum=sum+(1/n*pi)*(sin(n*pi) -sin(2*n*pi/3))*cos(n*pi*t(i)/3) + (1/n*pi)*(cos(2*n*pi/3) -cos(n*pi))*sin(n*pi*t(i)/3);

    end

f40(i)=f0+sum;

end

plot(t,f40)

xlabel('Time t in seconds')

ylabel('Value of function f(t)')

plot_ttle = ['Fourier Series representation of function f(t) for N = ',num2str(N)];

title(plot_ttle);

MATLAB output: The MATLAB output shown in Figure 2.

ENGINEERING CIRCUIT...(LL)>CUSTOM PKG.<, Chapter 17, Problem 8E , additional homework tip  2

MATLAB code to sketch for g2(t), g3(t), and g5(t) along with f(t):

t=linspace(-5,5,1000); % vector for time over 1000 points.

T=6; % Period

w0=2*pi/T; % natural frequency, is w0=2*pi.

f0=1.667; % constant.

N=40; % consider N=40 for instant.

for i=1:1000;

   g2=1.667-0.275*cos(3.141*t(i)/3)+0.159*sin(3.141*t(i)/3)+0.137*cos(2*3.141*t(i)/3)-0.238*sin(2*3.141*t(i)/3);

   g3=1.667-0.275*cos(3.141*t(i)/3)+0.159*sin(3.141*t(i)/3)+0.137*cos(2*3.141*t(i)/3)-0.238*sin(2*3.141*t(i)/3)+0.212*sin(pi*t(i));

   g5=1.667-0.275*cos(3.141*t(i)/3)+0.159*sin(3.141*t(i)/3)+0.137*cos(2*3.141*t(i)/3)-0.238*sin(2*3.141*t/3)+0.212*sin(pi*t)-0.069*cos(4*pi*t(i)/3)-0.119*sin(4*pi*t(i)/3)+0.055*cos(5*pi*t(i)/3)+0.0318*sin(5*pi*t(i)/3);

end

for i=1:1000;

sum=0;  

    for n=1:N;     

      sum=sum+(1/n*pi)*(sin(n*pi) -sin(2*n*pi/3))*cos(n*pi*t(i)/3) + (1/n*pi)*(cos(2*n*pi/3) -cos(n*pi))*sin(n*pi*t(i)/3);  

    end

f40(i)=f0+sum;

end

plot(t,g2,t,g3,t,g5,t,f40)

legend({'g2','g3','g5','f40'},'Location','best')

xlabel('Time t in sec')

ylabel('The values g2, g3, g5 and f40')

title('Plots for g2, g3, g5 and f40')

MATLAB output:

ENGINEERING CIRCUIT...(LL)>CUSTOM PKG.<, Chapter 17, Problem 8E , additional homework tip  3

Conclusion:

Thus, the sketch for g2(t), g3(t), g5(t) is drawn as shown in Figure 1, and the sketch for f(t) is drawn as shown in Figure 2, and the sketch for g2(t), g3(t), and g5(t) along with f(t) is drawn as shown in Figure 3.

(b)

Expert Solution
Check Mark
To determine

Find the function f(2.5), g2(2.5), g3(2.5), and g5(2.5).

Answer to Problem 8E

The value of f(2.5), g2(2.5), g3(2.5), and g5(2.5) is determined.

Explanation of Solution

Given data:

Refer to Figure 17.30 in the textbook.

Calculation:

From Part (a), the function f(t) is,

f(t)=1.667+n=1(26n(π3)[sin3n(π3)sin2n(π3)]cosn(π3)t)+n=1(26n(π3)[cos2n(π3)cos3n(π3)]sinn(π3)t){ω0=π3}

Finding f(2.5),

f(2.5)=1.667+n=1(26n(π3)[sin3n(π3)sin2n(π3)]cos2.5n(π3))+n=1(26n(π3)[cos2n(π3)cos3n(π3)]sin2.5n(π3))

From Part (a),

g2(t)=1.6670.275cos(π3)t+0.159sin(π3)t+0.137cos(2π3)t0.238sin(2π3)t

Finding g2(2.5),

g2(2.5)=1.6670.275cos(π3)(2.5)+0.159sin(π3)(2.5)+0.137cos(2π3)(2.5)0.238sin(2π3)(2.5)=1.6670.3437+0.34420.171250.5152=0.9811

From Part (a),

g3(t)=1.6670.275cos(π3)t+0.159sin(π3)t+0.137cos(2π3)t0.238sin(2π3)t+0.212sin(π)t

Finding g3(2.5),

g3(2.5)=1.6670.275cos(π3)(2.5)+0.159sin(π3)(2.5)+0.137cos(2π3)(2.5)0.238sin(2π3)(2.5)+0.212sin(2.5π)=1.6670.3437+0.34420.171250.5152+0.212=1.1931

From Part (a),

g5(t)=1.6670.275cos(π3)t+0.159sin(π3)t+0.137cos(2π3)t0.238sin(2π3)t+0.212sin(π)t0.069cos(4π3)t0.119sin(4π3)t+0.055cos(5π3)t+0.0318sin(5π3)t

Finding g5(2.5),

g5(t)=1.6670.275cos(π3)(2.5)+0.159sin(π3)(2.5)+0.137cos(2π3)(2.5)0.238sin(2π3)(2.5)+0.212sin(π)(2.5)0.069cos(4π3)(2.5)0.119sin(4π3)(2.5)+0.055cos(5π3)(2.5)+0.0318sin(5π3)(2.5)=1.6670.3437+0.34420.171250.5152+0.212+0.0862+0.2576+0.068750.0688=1.5368

Conclusion:

Thus, the value of f(2.5), g2(2.5), g3(2.5), and g5(2.5) is determined.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
No chatgpt pls will upvote
circuit find value of VAB using Super Position Theorem
dc circuit vth rth rl thevenin and then maximum transer and value of rl

Chapter 17 Solutions

ENGINEERING CIRCUIT...(LL)>CUSTOM PKG.<

Ch. 17.6 - Prob. 11PCh. 17.7 - Prob. 12PCh. 17.7 - Prob. 13PCh. 17.8 - Find (a) F5sin23t); (b) FAsin20t); (c)...Ch. 17.9 - Prob. 15PCh. 17.10 - Prob. 16PCh. 17 - Determine the fundamental frequency, fundamental...Ch. 17 - Plot multiple periods of the first, third, and...Ch. 17 - Calculate a0 for the following: (a) 4 sin 4t; (b)...Ch. 17 - Prob. 4ECh. 17 - Prob. 5ECh. 17 - Prob. 6ECh. 17 - Prob. 7ECh. 17 - With respect to the periodic waveform sketched in...Ch. 17 - Prob. 9ECh. 17 - Prob. 10ECh. 17 - A half-sinusoidal waveform is shown in Fig. 17.31,...Ch. 17 - Plot the line spectrum (limited to the six largest...Ch. 17 - Prob. 13ECh. 17 - Prob. 14ECh. 17 - Prob. 15ECh. 17 - Prob. 16ECh. 17 - Prob. 17ECh. 17 - Prob. 18ECh. 17 - The nonperiodic waveform g(t) is defined in Fig....Ch. 17 - Prob. 20ECh. 17 - Prob. 21ECh. 17 - Prob. 22ECh. 17 - Prob. 23ECh. 17 - Prob. 24ECh. 17 - Prob. 25ECh. 17 - Prob. 26ECh. 17 - Prob. 27ECh. 17 - Prob. 28ECh. 17 - Prob. 29ECh. 17 - Prob. 30ECh. 17 - Prob. 31ECh. 17 - Prob. 32ECh. 17 - Prob. 33ECh. 17 - Prob. 34ECh. 17 - Prob. 35ECh. 17 - Prob. 36ECh. 17 - Use the Fourier transform to obtain and plot the...Ch. 17 - Prob. 38ECh. 17 - Prob. 39ECh. 17 - Prob. 40ECh. 17 - For g(t) = 3etu(t), calculate (a) G(j); (b) ().Ch. 17 - Prob. 42ECh. 17 - Prob. 43ECh. 17 - Prob. 44ECh. 17 - Prob. 45ECh. 17 - Prob. 46ECh. 17 - Find F(j) if f(t) is given by (a) 2 cos 10t; (b)...Ch. 17 - Prob. 48ECh. 17 - Prob. 49ECh. 17 - Prob. 50ECh. 17 - Prob. 51ECh. 17 - Prob. 52ECh. 17 - Prob. 53ECh. 17 - If a system is described by transfer function h(t)...Ch. 17 - Prob. 55ECh. 17 - (a) Design a noninverting amplifier having a gain...Ch. 17 - Prob. 57ECh. 17 - Prob. 58ECh. 17 - Prob. 59ECh. 17 - Prob. 60ECh. 17 - Prob. 61ECh. 17 - Prob. 62ECh. 17 - Design an audio amplifier with gain of 10, using...
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Intro to FOURIER SERIES: The Big Idea; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=wmCIrpLBFds;License: Standard Youtube License