ENGINEERING CIRCUIT...(LL)>CUSTOM PKG.<
9th Edition
ISBN: 9781260540666
Author: Hayt
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 17, Problem 56E
(a) Design a noninverting amplifier having a gain of 10. If the circuit is constructed using an op amp powered by ±15 V supplies, determine the FFT of the output through appropriate simulations if the input voltage operates at 1 kHz and has magnitude (b) 10 mV; (c) 1 V; (d) 2 V.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Make a circuit using a 741 op-amp chip. The required specs of the circuit are: input impedance 500 Ohm, amplitude gain 20
Q:- For the below system, if you know that vin() is an Input and v.(t) is an
output, find:-
A. V.(s).
B. Represent the relation between V.(s) and V.(s)
and as signal flow graph.
as block diagram
2 52
Vin
4 F
vo(f)
Refer to the system shown in figure below
Ideal
Sampler
LTI
Assume that, h(t) = 4 sinc(4 t) and the spectrum of the input signal x(t) is as shown in the figure below
S(HZ)
a. Assume fs = 7 HZ, plot the spectrum of the sampled signal z(t), (show the important points) and find the output signal y(t).
b. Assume fs = 3 HZ, plot the spectrum of the sampled signal z(t), (show the important points).
Chapter 17 Solutions
ENGINEERING CIRCUIT...(LL)>CUSTOM PKG.<
Ch. 17.1 - Let a third-harmonic voltage be added to the...Ch. 17.1 - A periodic waveform f(t) is described as follows:...Ch. 17.2 - Prob. 3PCh. 17.2 - Prob. 4PCh. 17.3 - Prob. 5PCh. 17.3 - Prob. 6PCh. 17.4 - Prob. 7PCh. 17.5 - Prob. 8PCh. 17.5 - Prob. 9PCh. 17.6 - Prob. 10P
Ch. 17.6 - Prob. 11PCh. 17.7 - Prob. 12PCh. 17.7 - Prob. 13PCh. 17.8 - Find (a) F5sin23t); (b) FAsin20t); (c)...Ch. 17.9 - Prob. 15PCh. 17.10 - Prob. 16PCh. 17 - Determine the fundamental frequency, fundamental...Ch. 17 - Plot multiple periods of the first, third, and...Ch. 17 - Calculate a0 for the following: (a) 4 sin 4t; (b)...Ch. 17 - Prob. 4ECh. 17 - Prob. 5ECh. 17 - Prob. 6ECh. 17 - Prob. 7ECh. 17 - With respect to the periodic waveform sketched in...Ch. 17 - Prob. 9ECh. 17 - Prob. 10ECh. 17 - A half-sinusoidal waveform is shown in Fig. 17.31,...Ch. 17 - Plot the line spectrum (limited to the six largest...Ch. 17 - Prob. 13ECh. 17 - Prob. 14ECh. 17 - Prob. 15ECh. 17 - Prob. 16ECh. 17 - Prob. 17ECh. 17 - Prob. 18ECh. 17 - The nonperiodic waveform g(t) is defined in Fig....Ch. 17 - Prob. 20ECh. 17 - Prob. 21ECh. 17 - Prob. 22ECh. 17 - Prob. 23ECh. 17 - Prob. 24ECh. 17 - Prob. 25ECh. 17 - Prob. 26ECh. 17 - Prob. 27ECh. 17 - Prob. 28ECh. 17 - Prob. 29ECh. 17 - Prob. 30ECh. 17 - Prob. 31ECh. 17 - Prob. 32ECh. 17 - Prob. 33ECh. 17 - Prob. 34ECh. 17 - Prob. 35ECh. 17 - Prob. 36ECh. 17 - Use the Fourier transform to obtain and plot the...Ch. 17 - Prob. 38ECh. 17 - Prob. 39ECh. 17 - Prob. 40ECh. 17 - For g(t) = 3etu(t), calculate (a) G(j); (b) ().Ch. 17 - Prob. 42ECh. 17 - Prob. 43ECh. 17 - Prob. 44ECh. 17 - Prob. 45ECh. 17 - Prob. 46ECh. 17 - Find F(j) if f(t) is given by (a) 2 cos 10t; (b)...Ch. 17 - Prob. 48ECh. 17 - Prob. 49ECh. 17 - Prob. 50ECh. 17 - Prob. 51ECh. 17 - Prob. 52ECh. 17 - Prob. 53ECh. 17 - If a system is described by transfer function h(t)...Ch. 17 - Prob. 55ECh. 17 - (a) Design a noninverting amplifier having a gain...Ch. 17 - Prob. 57ECh. 17 - Prob. 58ECh. 17 - Prob. 59ECh. 17 - Prob. 60ECh. 17 - Prob. 61ECh. 17 - Prob. 62ECh. 17 - Design an audio amplifier with gain of 10, using...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
A nozzle at A discharges water with an initial velocity of 36 ft/s at an angle with the horizontal. Determine ...
Vector Mechanics For Engineers
The solid steel shaft AC has a diameter of 25 mm and is supported by smooth bearings at D and E. It is coupled ...
Mechanics of Materials (10th Edition)
Why is the study of database technology important?
Database Concepts (8th Edition)
This optional Google account security feature sends you a message with a code that you must enter, in addition ...
SURVEY OF OPERATING SYSTEMS
Assume a telephone signal travels through a cable at two-thirds the speed of light. How long does it take the s...
Electric Circuits. (11th Edition)
17–1C A high-speed aircraft is cruising in still air. How does the temperature of air at the nose of the aircra...
Thermodynamics: An Engineering Approach
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- VoD +12 V For the circuit of the adjacent figure a) Given that Ip = 2.83 mA, VGS(om=-7 V and Ipss = 8 mA , find VDs and VGs.. b) If a 50 mV rms input signal is applied to the amplifier, what is the peak-to-peak output voltage? gm = 5000 µS. c) Calculate the output resistance. %3D Ro 10AF 0.1 uF R 10 L. Ra 10 MA 10kn ID= 2.83 mA, Vas (Oef)=-7V. %3Darrow_forwarda) The DC bridge shown below in the figure has a resistor Rv which is sensitive to the variation in temperature. Use the plot of Rv versus Temp. to find the following: 1) The value of temperature at a balance bridge. 2) The output voltage signal at 0°C, 20°C, 40°C, 60°C, 80°, 100°C, 120°C and 140°C. What is your observation? 3) If a galvanometer is connected to the output signal and it has a current sensitivity of 12 mm/µA with an internal resistance of 5092, determine the deflection of the galvanometer caused by 1502 unbalance in Rv arm. 4) What will happen to the deflection of the galvanometer in part (4) if the current sensitivity is changed to 24 mm/µA? Show your results and explain. Resistor Rv which is sensitive to the variation in Temperature 10kQ 10kΩ 10 10 V R, Output signal 40 60 80 100 120 140 Temperature (°C) 10kQ Rv (kn) 9 8 7 5 3 2 1 0 20 160arrow_forwardA thermocouple with a sensitivity of 0.0225 mV/F is used to measure temperature. The signal from the thermocouple is passed through a non-inverting amplifier as below. Where the resistors R₁ = 9.99k and R₁ =1092. The amplified signal is then passed through an 8 bit A/D converter. If the the full scale voltage is 10V. a. What is the temperature resolution? b. What is the range of temperature can be measured from zero? c. If measuring a temperature of 200° F, what is the voltage indicated by the A/D converter? What is the reading of temperature from the DAQ system? V₁ Op-amp m Rarrow_forward
- Q4) Sketch the MUX equivalent for the function (F= BC + AC). Ans:arrow_forwardFigure QI shows the circuit diagram of a "Logarithmic Amplifier". In this circuit the feedback resistor of a normal inverting amplifier is replaced by a silicon diode. Since the current flowing through the diode increases exponentially with the voltage across the diode, the voltage across the diode will be proportional to the logarithm current flowing through it. Hence the output of the circuit is proportional to the logarithm of the input voltage. QI DI RIN Al Figure QI The current flowing through a diode is given by the Shock' y Diode Equat n: 1,=1, (e" =1) where , is the current flowing through the diode g is the charge on the electron (given at the back of the examination sheet) V, is the voltage across the diode K, is Boltzmann's constant (given at the back of the examination sheet) Tis room temperature (given at the back of the examination sheet) Given that /,> 1, an approximate expression for V, as a function of I, is Continued overleaf Page 2 of 9 QI (a) 0) Neglecting any input…arrow_forwardsolve the problemsarrow_forward
- 4. If Vcc = 20 V, Rc is 440, R1 is 1500, R2 is 800, R3 is 6500, Re is 1000 and beta is 175; determine the cutoff and saturation values for an amplified signal, whose original value is 250 mV. Consider the minimization of the effects of r for the circuit Vcc www R3 ww www R₁ R₂ www Rc REarrow_forwardhelp me please..................arrow_forwardWhen two or more signals merge in a linear device, such as a passive network or a small-signal amplifier, it is called linear mixing. When two or more signals are merged in a nonlinear device such as a diode or a large-signal amplifier, this is known as nonlinear mixing. In terms of mathematical expressions, these are the following: Select your answer. The output voltage of a nonlinear mixing multiple-input frequencies is equal to the polynomial function of the sum of input voltages. The output voltage of a linear mixing multiple-input frequencies is equal to the polynomial function of the sum of the input voltages. The output voltage is equal to the polynomial function of the input voltage for a linear mixing single-input frequency. The output voltage of a nonlinear mixing single-input frequency is just the product of gain and input voltage signal.arrow_forward
- Circuit needed for thisarrow_forwardA trans-impedance amplifier (TIA) has a signal gain of -1500 V/A up to certain operation frequency. (b). You are given a photodiode D1, a capacitor C₁, a resistor R₁ and an operational amplifier which operates at a supply voltage of 5 V. Draw a clearly labelled circuit diagram showing how you can construct a TIA from the given components for detecting and converting weak optical signals into electrical signals.arrow_forwardAccording to the maximum power transfer rule, it must be in order to draw maximum energy.............. from the circuit.What should come in yhe blank? Please choose one: a. is equal to the output resistance of the circuit and the input resistance of the receiver circuit. B. The input resistance of the ob circuit is small c. The output resistance of the circuit is greater than the input resistance of the receiver circuit D. The output resistance of the Od circuit is less than the inputE. e is the largest starting resistance of the circuitarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
David Sarnoff, Howard Armstrong & the Superheterodyne Receiver; Author: Kathy Loves Physics & History;https://www.youtube.com/watch?v=7eTfF67Ka5w;License: Standard Youtube License