(a)
Interpretation : The balanced chemical equation for the overall reaction of the given mechanism should be interpreted.
Concept Introduction :
(b)
Interpretation : The molecularity of each step of the given mechanism should be interpreted.
Concept Introduction :
Chemical kinetics is the branch of chemistry that deals with the rate of chemical reactions. The rate law is the expression of the active masses of the reactants involved in the chemical reaction. The rate constant is a proportionality constant between the rate and active mass of the reactant. The overall reactant can be the sum of the elementary steps of the chemical equations.
(c)
Interpretation : The rate law of the given mechanism should be interpreted.
Concept Introduction :
Chemical kinetics is the branch of chemistry that deals with the rate of chemical reactions. The rate law is the expression of the active masses of the reactants involved in the chemical reaction. The rate constant is a proportionality constant between the rate and active mass of the reactant. The overall reactant can be the sum of the elementary steps of the chemical equations.
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
CHEMISTRY MOLECULAR NATURE OF MATTER
- The following equation represents a reversible decomposition: CaCO3(s)CaO(s)+CO2(g) Under what conditions will decomposition in a closed container proceed to completion so that no CaCO3 remains?arrow_forwardA reaction is believed to occur by the following mechanism: Stepl: 2AI (Fast equilibrium) Step 2: I + B C (Slow) Overall: 2 A + B C What experimentally determined rate law would lead to this mechanism? (a) Rate = k[A][B] (b) Rate = k[A]2[B] (c) Rate = k[A]2 (d) Rate = k[I][B]arrow_forwardFor a first order gas phase reaction A products, k = 7.2 104s1 at 660. K and k = 1.7 102s1 at 720. K. If the initial pressure of A is 536 torr at 295C, how long will it take for the pressure of A to decrease to 268 torr?arrow_forward
- Can a reaction mechanism ever be proven correct? Can it be proven incorrect?arrow_forwardConsider the reaction of ozone and nitrogen monoxide to form nitrogen dioxide and oxygen. O3(g) + NO(g) NO2(g) + O2(g) Which of the following orientations for the collision between ozone and nitrogen monoxide could perhaps lead to an effective collision between the molecules? (a) (b) (c) (d)arrow_forwardThe reaction NO(g) + O,(g) — NO,(g) + 0(g) plays a role in the formation of nitrogen dioxide in automobile engines. Suppose that a series of experiments measured the rate of this reaction at 500 K and produced the following data; [NO] (mol L ’) [OJ (mol L 1) Rate = -A[NO]/Af (mol L_1 s-1) 0.002 0.005 8.0 X 10"'7 0.002 0.010 1.6 X 10-'6 0.006 0.005 2.4 X IO-'6 Derive a rate law for the reaction and determine the value of the rate constant.arrow_forward
- Is a system at equilibrium if the rate constants of the forward and reverse reactions are equal?arrow_forwardThe ozone in the Earths ozone layer decomposes according to the equation 2 O3(g) 3 O2(g) The mechanism of the reaction is thought to proceed through an initial fast equilibrium and a slow step: Show that the mechanism agrees with this experimental rate law: Rate = (1/2)[O3]/t = k[O3]2[O2].arrow_forwardBy which of the following mechanisms does a catalyst operate? a. It decreases the activation energy barrier for a reaction. b. It serves as a reactant and is consumed. c. It increases the temperature of a reaction. d. It increases the concentration of reactants.arrow_forward
- The reaction H2SeO3(aq) + 6I-(aq) + 4H+(aq) Se(s) + 2I-3(aq) + 3H2O(l) was studied at 0C, and the following data were obtained: [H2SeO3]0 (mol/L) [H+]0 (mol/L) [I]0(mol/L) Initial Rate (mol/L s) 1.0 104 2.0 102 2.0 102 1.66 107 2.0 104 2.0 102 2.0 10-2 3.33 107 3.0 104 2.0 102 2.0 102 4.99 107 1.0 104 4.0 102 2.0 102 6.66 107 1.0 104 1.0 102 2.0 102 0.42 107 1.0 104 2.0 102 4.0 102 13.2 107 1.0 104 1.0 102 4.0 102 3.36 107 These relationships hold only if there is a very small amount of I3 present. What is the rate law and the value of the rate constant? (Assumethatrate=[H2SeO3]t)arrow_forward26arrow_forwardDerive the unit for K then using K at 904 degrees celsius, find the rate of reaction at the instant when [NO]=0.470 M and [H2] = 0.315Marrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning