(a)
Interpretation : The intermediate needs to interpret the given mechanism of the decomposition of hydrogen peroxide.
Concept Introduction :
The area of chemistry that deals with the rate of the
(b)
Interpretation : The rate-determining step of the given mechanism should be determined if the rate law of the decomposition of hydrogen peroxide is given as:
Concept Introduction :
The area of chemistry that deals with the rate of the chemical reaction is known as chemical kinetics. The active masses of the reactants involved in the chemical reaction are expressed by the rate law. The rate constant is a constant of proportionality between the rate and the reactant's active mass. The total of the basic stages in the chemical equations can be the overall reactant.
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
CHEMISTRY MOLECULAR NATURE OF MATTER
- The Raschig reaction produces the industrially important reducing agent hydrazine, N2H4, from ammonia, NH3, and hypochlorite ion, OCl−, in basic aqueous solution. A proposed mechanism is Step 1: Step 2: Step 3: What is the overall stoichiometric equation? Which step is rate-limiting? What reaction intermediates are involved? What rate law is predicted by this mechanism?arrow_forwardThe label on a bottle of 3% (by volume) hydrogen peroxide, H2O2, purchased at a grocery store, states that the solution should be stored in a cool, dark place. H2O2decomposes slowly over time, and the rate of decomposition increases with an increase in temperature and in the presence of light. However, the rate of decomposition increases dramatically if a small amount of powdered MnO- is added to the solution. The decomposition products are H2O and O2. MnO2 is not consumed in the reaction. Write the equation for the decomposition of H2O2. What role does MnO2 play? In the chemistry lab, a student substituted a chunk of MnO2 for the powdered compound. The reaction rate was not appreciably increased. WTiat is one possible explanation for this observation? Is MnO2 part of the stoichiometry of the decomposition of H2O2?arrow_forwardDefine stability from both a kinetic and thermodynamic perspective. Give examples to show the differences in these concepts.arrow_forward
- When the rate of the reversible reaction A + BSC is studied under a certain set of conditions, it is found that the rate of the forward reaction is kA]. What can be concluded about the rate law for the reverse reaction under these conditions? (A) Rate = k-[C] %3D (B) Rate = k [B] (C) The rate law of the reverse reaction cannot be determined from the information given. (D) An crror must have been made, since if the reaction is reversible, the forward rate law must be Rate = k{A][B]. %3Darrow_forwardAcetone is one of the most important solvents in organicchemistry, used to dissolve everything from fats and waxes toairplane glue and nail polish. At high temperatures, it decom-poses in a first-order process to methane and ketene(CH2=C=O). At 600C, the rate constant is 8.7x10^-3s⁻¹.(a) What is the half-life of the reaction?(b) How long does it take for 40.% of a sample of acetone todecompose?(c) How long does it take for 90.% of a sample of acetone todecompose?arrow_forwardFor the reaction: 2N2O5(g) -->4NO(g) + O2(g) (a) write the mathematical rate expression in terms of (i) the disappearance of N2O5 (Reactant); (ii) the formation of NO (Product); (iii) the formation of O2 (Product). (b) What are the stoichiometric relationships (rationalization) of the various rates for this reaction? (e.g. Product C formation is 2x faster than Reactant A disappearance/decomposition.) For the reaction: 5 Br-(aq) + BrO3-(aq) + 6 H+(aq)--> 3 Br2(aq) + 3 H2O(l); (a) write the expressions of the reaction rates mathematically in terms of (i) the disappearance of Br- (Reactant); (ii) the disappearance of BrO3- (Reactant), and (iii) the formation of Br2 (Product). (b) What are the stoichiometric relationships (rationalization) of the various rates for this reaction? (e.g. Product C formation is 2x faster than Reactant A…arrow_forward
- 5*) a) The reaction A B has been experimentally determined to be second order. The initial rate is 0.0100 M/s at an initial concentration of [A] of 0.100 M. What is the initial rate at [A]o = 0.500 M? b) The reaction below was experimentally determined to be first order with respect to O2 and second order with respect to NO. O2(g) + 2 NO(g) → 2 NO2(g) The diagrams provided represent reaction mixtures in which the number of each type of molecule represents its relative initial concentration. Which mixture has the fastest initial rate? Explain. KEY: = 02 = NO (i) (ii) (iii)arrow_forward1. Which of the following statements is incorrect? (A) As the chemical reaction proceeds, the rate of reaction increases. (B) The reaction rate almost gets doubled for 10°C rise in temperature. (C) For a first order chemical reaction, the rate constant has unit of time-1. (D) Chemical kinetics can predict the rate of a chemical reaction. 2. In a chemical reaction, represented by A → P, it is observed that the rate of reaction increases by a factor of 4 on doubling the concentration of the reactant. The rate of reaction increases by a factor of 9 on trebling the concentration of the reactant. Then the rate of the reaction is proportional to (A) CA (B) CA2 (C) CA3 (D) CA4 3. An elementary reaction has the stoichiometric equation A + 2B = P. What is the order of reaction (A) 0 (B) 1 (C) 2 (D) 3 4. It states that the rate of a chemical reaction is directly proportional to the product of the activities or concentrations of the reactants. (A) Law of mass action…arrow_forwardConsider the following reaction: Q:4-1 2 NO(g) + 2 H;(g) → N;(8) + 2 H,0(g) (a) The rate law for this reaction is first order in H, and second order in NO. Write the rate law. (b) If the rate constant for this reaction at 1000 K is 6.0 × 10ª M-²s¯!, what is the re- action rate when [NO] = 0.035 M and [H,] = 0.015 M? (c) What is the reaction rate at 1000 K when the concentration of NO is increased to 0.10 M, while the concentration of H, is 0.010 M? (d) What is the reaction rate at 1000 K if [NO] is decreased to 0.010 M and [H,] is increased to 0.030 M? %3Darrow_forward
- For the reaction: 2N2O5(g) -->4NO(g) + O2(g) (a) write the mathematical rate expression in terms of (1) the disappearance of N½O5 (Reactant); (ii) the formation of NO (Product); (ii) the formation of O2 (Product). (b) What are the stoichiometric relationships (rationalization) of the various rates for this reaction? (e.g. Product C formation is 2x faster than Reactant A disappearance/decomposition.)arrow_forwardBenzoyl peroxide (C14H10O4) is widely used in acne treatments. It degrades by 1st-order kinetics and has a half-life of 9.8×103 days at 25 °C.(a) What is the rate constant for this reaction at 25 °C? (b) How many years will it take for 10% of the benzoyl peroxide to degrade?arrow_forward(a) Select all of the correct statements about reaction rates from the choices below. The lower the rate of a reaction the longer it takes to reach completion.Reactions involving very unstable combinations of chemicals have large rate constants.Concentrations of homogeneous catalysts have no effect on reaction rates.Reaction rate constants are independent of temperature.The slowest step in a reaction is called the rate-determining step.A balanced chemical reaction is necessary to relate the rate of reaction to the concentration of a reactant.Slow reactions can be speeded up by raising the temperature.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning