Chemistry: Atoms First
Chemistry: Atoms First
3rd Edition
ISBN: 9781259638138
Author: Julia Burdge, Jason Overby Professor
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 16.1, Problem 2PPA

Identify and label the species in each reaction.

(a) NH 4 + ( a q ) + H 2 O ( l ) NH 3 ( a q ) + H 3 O + ( a q )

(b) CN - ( a q ) + H 2 O ( l ) HCN ( a q ) + OH ( a q )

(a)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The species in each of the given reaction has to be identified and labeled.

Concept Information:

When a Bronsted acid donates a proton, what remains of the acid is known as a conjugate base; when a Bronsted base accepts a proton, the newly formed protonated species is known as a conjugate acid.  This can be given by the below equation as shown in Figure 1.

Chemistry: Atoms First, Chapter 16.1, Problem 2PPA , additional homework tip  1

Figure 1

The reactant that loses a proton is the acid and the reactant that gains a proton is the base.

Each product is the conjugate of one of the reactant.

Two species that differ only by a proton constitute a conjugate pair

Addition of proton to a species gives its conjugate acid whereas removal of proton from a species gives its conjugate base.

To Label: The equation NH4+(aq) + H2O(l)NH3(aq) + H3O+(aq) as acid, base, conjugate acid or conjugate base.

Answer to Problem 2PPA

Answer

(a) NH4+(aq) + H2O(l)NH3(aq) + H3O+(aq)     acid            base          conjugate      conjugate                                            base              acid

Explanation of Solution

NH4+ loses a proton and becomes NH3 ; H2O gains a proton and becomes H3O+

Hence, NH4+ is acid and H2O is base.

NH3 loses one proton and becomes conjugate base of NH4+

H3O+ gains one proton and become conjugate acid of H2O

Therefore, the given equation is labeled as,

NH4+(aq) + H2O(l)NH3(aq) + H3O+(aq)acid            base          conjugate      conjugate                                       base              acid

(b)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The species in each of the given reaction has to be identified and labeled.

Concept Information:

When a Bronsted acid donates a proton, what remains of the acid is known as a conjugate base; when a Bronsted base accepts a proton, the newly formed protonated species is known as a conjugate acid.  This can be given by the below equation as shown in Figure 1.

Chemistry: Atoms First, Chapter 16.1, Problem 2PPA , additional homework tip  2

Figure 1

The reactant that loses a proton is the acid and the reactant that gains a proton is the base.

Each product is the conjugate of one of the reactant.

Two species that differ only by a proton constitute a conjugate pair

Addition of proton to a species gives its conjugate acid whereas removal of proton from a species gives its conjugate base.

To Label: The equation CN-(aq) + H2O(l)HCN(aq) + OH-(aq) as acid, base, conjugate acid or conjugate base.

Answer to Problem 2PPA

Answer

(b) CN-(aq) + H2O(l)HCN(aq) OH-(aq)     base         acid             conjugate      conjugate                                             acid              base

Explanation of Solution

H2O loses a proton and becomes  OH- ; CN- gains a proton and becomes HCN

Hence, H2O is acid and CN- is base.

OH- loses one proton and becomes conjugate base of H2O

HCN gains one proton and become conjugate acid of CN-

Therefore, the given equation is labeled as,

CN-(aq) + H2O(l)HCN(aq) OH-(aq)base         acid             conjugate      conjugate                                        acid              base

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A certain half-reaction has a standard reduction potential Ered +1.26 V. An engineer proposes using this half-reaction at the anode of a galvanic cell that must provide at least 1.10 V of electrical power. The cell will operate under standard conditions. Note for advanced students: assume the engineer requires this half-reaction to happen at the anode of the cell. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the minimum. Round your answer to 2 decimal places. If there is no lower limit, check the "no" box.. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the maximum. Round your answer to 2 decimal places. If there is no upper limit, check the "no" box. yes, there is a minimum. 1 red Πν no minimum Oyes, there is a maximum. 0 E red Dv By using the information in the ALEKS…
In statistical thermodynamics, check the hcv following equality: ß Aɛ = KT
Please correct answer and don't used hand raiting

Chapter 16 Solutions

Chemistry: Atoms First

Ch. 16.2 - Predict the relative strengths of the oxoacids in...Ch. 16.2 - Prob. 3PPACh. 16.2 - Based on the information in this section, which is...Ch. 16.2 - Prob. 3PPCCh. 16.2 - Arrange the following organic acids in order of...Ch. 16.2 - Arrange the following acids in order of increasing...Ch. 16.2 - Prob. 16.2.3SRCh. 16.3 - Prob. 16.4WECh. 16.3 - The concentration of hydroxide ions in the antacid...Ch. 16.3 - The value of Kw at normal body temperature (37C)...Ch. 16.3 - Prob. 4PPCCh. 16.3 - Calculate [OH] in a solution in which [H3O+] =...Ch. 16.3 - Prob. 16.3.2SRCh. 16.4 - Determine the pOH of a solution at 25C in which...Ch. 16.4 - Determine the pOH of a solution at 25C in which...Ch. 16.4 - Determine the pOH of a solution at 25C in which...Ch. 16.4 - Prob. 5PPCCh. 16.4 - Calculate the hydroxide ion concentration in a...Ch. 16.4 - Prob. 6PPACh. 16.4 - Prob. 6PPBCh. 16.4 - Prob. 6PPCCh. 16.4 - Determine the pH of a solution at 25C in which...Ch. 16.4 - Determine [H+] in a solution at 25C if pH = 5.75....Ch. 16.4 - Prob. 16.4.3SRCh. 16.4 - Prob. 16.4.4SRCh. 16.5 - Calculate the pH of an aqueous solution at 25C...Ch. 16.5 - Prob. 7PPACh. 16.5 - Prob. 7PPBCh. 16.5 - Prob. 7PPCCh. 16.5 - Prob. 16.8WECh. 16.5 - Calculate the concentration of HNO3 in a solution...Ch. 16.5 - Prob. 8PPBCh. 16.5 - Which of the plots [(i)(iv)] best approximates the...Ch. 16.5 - Prob. 16.9WECh. 16.5 - Prob. 9PPACh. 16.5 - Prob. 9PPBCh. 16.5 - Prob. 9PPCCh. 16.5 - Prob. 16.10WECh. 16.5 - Prob. 10PPACh. 16.5 - Prob. 10PPBCh. 16.5 - Prob. 10PPCCh. 16.5 - Calculate the pH of a 0.075 M solution of...Ch. 16.5 - What is the concentration of HBr in solution with...Ch. 16.5 - Prob. 16.5.3SRCh. 16.5 - Prob. 16.5.4SRCh. 16.5 - Prob. 16.5.5SRCh. 16.5 - Prob. 16.5.6SRCh. 16.5 - Prob. 16.5.7SRCh. 16.6 - The Ka of hypochlorous acid (HClO) is 3.5 108....Ch. 16.6 - Calculate the pH at 25C of a 0.18-M solution of a...Ch. 16.6 - Prob. 11PPBCh. 16.6 - The diagrams show solutions of four different weak...Ch. 16.6 - Determine the pH and percent ionization for acetic...Ch. 16.6 - Determine the pH and percent ionization for...Ch. 16.6 - At what concentration does hydrocyanic acid...Ch. 16.6 - Prob. 12PPCCh. 16.6 - Aspirin (acetylsalicylie acid, HC9H7O4) is a weak...Ch. 16.6 - Prob. 13PPACh. 16.6 - Prob. 13PPBCh. 16.6 - Calculate Ka values (to two significant figures)...Ch. 16.6 - Prob. 16.6.1SRCh. 16.6 - Prob. 16.6.2SRCh. 16.6 - Prob. 16.6.3SRCh. 16.7 - Prob. 16.14WECh. 16.7 - Calculate the pH at 25C of a 0.0028-M solution of...Ch. 16.7 - Prob. 14PPBCh. 16.7 - The diagrams represent solutions of three...Ch. 16.7 - Caffeine, the stimulant in coffee and tea, is a...Ch. 16.7 - Prob. 15PPACh. 16.7 - Prob. 15PPBCh. 16.7 - Prob. 15PPCCh. 16.7 - Prob. 16.7.1SRCh. 16.7 - A 0.12-M solution of a weak base has a pH of 10.76...Ch. 16.7 - Prob. 16.7.3SRCh. 16.8 - Prob. 16.16WECh. 16.8 - Prob. 16PPACh. 16.8 - Prob. 16PPBCh. 16.8 - Prob. 16PPCCh. 16.8 - Prob. 16.8.1SRCh. 16.8 - Prob. 16.8.2SRCh. 16.8 - Prob. 16.8.3SRCh. 16.9 - Oxalic acid (H2C2O4) is a poisonous substance used...Ch. 16.9 - Calculate the concentrations of H2C2O4, HC2O4,...Ch. 16.9 - Calculate the concentrations of H2SO4, HSO4, SO42,...Ch. 16.9 - Prob. 16.9.1SRCh. 16.9 - What is the pH of a 0.40-M solution of phosphoric...Ch. 16.9 - Prob. 16.9.3SRCh. 16.10 - Calculate the pH of a 0.10-M solution of sodium...Ch. 16.10 - Determine the pH of a 0.15-M solution of sodium...Ch. 16.10 - Prob. 18PPBCh. 16.10 - Winch of the graphs [(i)(iv)] best represents the...Ch. 16.10 - Calculate the pH of a 0.10-M solution of ammonium...Ch. 16.10 - Determine the pH of a 0.25-M solution of...Ch. 16.10 - Prob. 19PPBCh. 16.10 - Prob. 19PPCCh. 16.10 - Predict whether a 0.10-M solution of each of the...Ch. 16.10 - Predict whether a 0.10-M solution of each of the...Ch. 16.10 - Prob. 20PPBCh. 16.10 - Prob. 20PPCCh. 16.10 - Calculate the pH of a 0.075-M solution of NH4NO3...Ch. 16.10 - Calculate the pH of a 0.082-M solution of NaCN at...Ch. 16.10 - Which of the following salts will produce a basic...Ch. 16.10 - Which of the following salts will produce a...Ch. 16.10 - Prob. 16.10.5SRCh. 16.12 - Identify the Lewis acid and Lewis base in each of...Ch. 16.12 - Prob. 21PPACh. 16.12 - Prob. 21PPBCh. 16.12 - Which of the diagrams best depicts the combination...Ch. 16.12 - Prob. 16.12.1SRCh. 16.12 - Prob. 16.12.2SRCh. 16 - Calculate the pH of a solution that is 0.22 M in...Ch. 16 - Determine pH at the equivalence point in the...Ch. 16 - Calculate the pH of a solution that is 0.22 M in...Ch. 16 - Determine pH at the equivalence point in the...Ch. 16 - F or a species to act as a Brnsted base, an atom...Ch. 16 - Identify the acid-base conjugate pairs in each of...Ch. 16 - Prob. 16.3QPCh. 16 - Prob. 16.4QPCh. 16 - Write the formulas of the conjugate bases of the...Ch. 16 - Prob. 16.6QPCh. 16 - Prob. 16.7QPCh. 16 - List four factors that affect the strength of an...Ch. 16 - Prob. 16.9QPCh. 16 - Prob. 16.10QPCh. 16 - Prob. 16.11QPCh. 16 - Prob. 16.12QPCh. 16 - Prob. 16.13QPCh. 16 - Write the equilibrium expression for the...Ch. 16 - Write an equation relating [H+] and [OH] in...Ch. 16 - Write an equation relating [H+] and [OH] in...Ch. 16 - Prob. 16.17QPCh. 16 - Prob. 16.18QPCh. 16 - Prob. 16.19QPCh. 16 - Prob. 16.20QPCh. 16 - Prob. 16.21QPCh. 16 - Prob. 16.22QPCh. 16 - Prob. 16.23QPCh. 16 - Calculate the concentration of H+ ions in a 0.62 M...Ch. 16 - Calculate the concentration of OH ions in a 1.4 ...Ch. 16 - Calculate the pH of each of the following...Ch. 16 - Calculate the pH of each of the following...Ch. 16 - Prob. 16.28QPCh. 16 - Prob. 16.29QPCh. 16 - Prob. 16.30QPCh. 16 - How much NaOH (in grams) is needed to prepare 546...Ch. 16 - Prob. 16.32QPCh. 16 - Why are ionizations of strong acids and strong...Ch. 16 - Calculate the pH of an aqueous solution at 25C...Ch. 16 - Prob. 16.35QPCh. 16 - Calculate the concentration of HBr in a solution...Ch. 16 - Calculate the concentration of HNO3 in a solution...Ch. 16 - Calculate the pOH and pH of the following aqueous...Ch. 16 - Calculate the pOH and pH of the following aqueous...Ch. 16 - Prob. 16.40QPCh. 16 - Prob. 16.41QPCh. 16 - Prob. 16.42QPCh. 16 - Prob. 16.43QPCh. 16 - Prob. 16.1VCCh. 16 - Prob. 16.2VCCh. 16 - Prob. 16.3VCCh. 16 - Prob. 16.4VCCh. 16 - Prob. 16.44QPCh. 16 - Prob. 16.45QPCh. 16 - Prob. 16.46QPCh. 16 - Why do we normally not quote Ka values for strong...Ch. 16 - Why is it necessary to specify temperature when...Ch. 16 - Which of the following solutions has the highest...Ch. 16 - Prob. 16.50QPCh. 16 - The Ka for benzoic acid is 6.5 105. Calculate the...Ch. 16 - Calculate the pH of an aqueous solution at 25C...Ch. 16 - Calculate the pH of an aqueous solution at 25C...Ch. 16 - Determine the percent ionization of the following...Ch. 16 - Determine the percent ionization of the following...Ch. 16 - Calculate the concentration at which a monoprotic...Ch. 16 - A 0.015-M solution of a monoprotic acid is 0.92%...Ch. 16 - Prob. 16.58QPCh. 16 - Prob. 16.59QPCh. 16 - Prob. 16.60QPCh. 16 - Prob. 16.61QPCh. 16 - Prob. 16.62QPCh. 16 - In biological and medical applications, it is...Ch. 16 - Classify each of the following species as a weak...Ch. 16 - Prob. 16.65QPCh. 16 - Prob. 16.66QPCh. 16 - Prob. 16.67QPCh. 16 - Which of the following has a higher pH: (a) 1.0 M...Ch. 16 - Prob. 16.69QPCh. 16 - Prob. 16.70QPCh. 16 - Prob. 16.71QPCh. 16 - What is the original molarity of an aqueous...Ch. 16 - Prob. 16.73QPCh. 16 - Prob. 16.74QPCh. 16 - Prob. 16.75QPCh. 16 - Prob. 16.76QPCh. 16 - Prob. 16.77QPCh. 16 - Calculate Ka for each of the following ions: NH4+,...Ch. 16 - The following diagrams represent aqueous solutions...Ch. 16 - Prob. 16.80QPCh. 16 - Write all the species (except water) that are...Ch. 16 - Write the Ka1 and Ka2 expressions for sulfurous...Ch. 16 - Prob. 16.83QPCh. 16 - Prob. 16.84QPCh. 16 - Prob. 16.85QPCh. 16 - Prob. 16.86QPCh. 16 - Calculate the pH at 25C of a 0.25-M aqueous...Ch. 16 - The first and second ionization constants of a...Ch. 16 - Prob. 16.89QPCh. 16 - Prob. 16.90QPCh. 16 - Explain why small, highly charged metal ions are...Ch. 16 - Prob. 16.92QPCh. 16 - Specify which of the following salts will undergo...Ch. 16 - Prob. 16.94QPCh. 16 - Calculate the pH of a 0.42 M NH4Cl solution. (Kb...Ch. 16 - Calculate the pH of a 0.082 M NaF solution. (Ka...Ch. 16 - Calculate the pH of a 0.91 M C2H5NH3I solution....Ch. 16 - Prob. 16.98QPCh. 16 - Predict whether the following solutions are...Ch. 16 - Prob. 16.100QPCh. 16 - In a certain experiment, a student finds that the...Ch. 16 - Prob. 16.102QPCh. 16 - Prob. 16.103QPCh. 16 - Classify the following oxides as acidic, basic,...Ch. 16 - Prob. 16.105QPCh. 16 - Explain why metal oxides tend to be basic if the...Ch. 16 - Arrange the oxides in each of the following groups...Ch. 16 - Prob. 16.108QPCh. 16 - Prob. 16.109QPCh. 16 - Prob. 16.110QPCh. 16 - Prob. 16.111QPCh. 16 - Prob. 16.112QPCh. 16 - In terms of orbitals and electron arrangements,...Ch. 16 - Prob. 16.114QPCh. 16 - Prob. 16.115QPCh. 16 - Which would be considered a stronger Lewis acid:...Ch. 16 - Prob. 16.117QPCh. 16 - Identify the Lewis acid and the Lewis base in the...Ch. 16 - Identify the Lewis acid and the Lewis base in the...Ch. 16 - Prob. 16.120QPCh. 16 - Prob. 16.121QPCh. 16 - Prob. 16.122QPCh. 16 - Prob. 16.123QPCh. 16 - Prob. 16.124QPCh. 16 - Calculate the pH and percent ionization of a 0.88...Ch. 16 - Prob. 16.126QPCh. 16 - Prob. 16.127QPCh. 16 - The pH of a 0.0642-M solution of a monoprotic acid...Ch. 16 - Prob. 16.129QPCh. 16 - HA and HB are both weak acids although HB is the...Ch. 16 - Prob. 16.131QPCh. 16 - Prob. 16.132QPCh. 16 - Use the data in Table 16.5 to calculate the...Ch. 16 - Prob. 16.134QPCh. 16 - Most of the hydrides of Group 1A and Group 2 A...Ch. 16 - Prob. 16.136QPCh. 16 - Novocaine, used as a local anesthetic by dentists,...Ch. 16 - Which of the following is the stronger base: NF3...Ch. 16 - Prob. 16.139QPCh. 16 - The ion product of D20 is 1.35 1015 at 25C. (a)...Ch. 16 - Prob. 16.141QPCh. 16 - Prob. 16.142QPCh. 16 - Prob. 16.143QPCh. 16 - Prob. 16.144QPCh. 16 - Prob. 16.145QPCh. 16 - When the concentration of a strong acid is not...Ch. 16 - Calculate the pH of a 2.00 M NH4CN solution.Ch. 16 - Prob. 16.148QPCh. 16 - Prob. 16.149QPCh. 16 - Prob. 16.150QPCh. 16 - Prob. 16.151QPCh. 16 - Hydrocyanic acid (HCN) is a weak acid and a deadly...Ch. 16 - How many grams of NaCN would you need to dissolve...Ch. 16 - Prob. 16.154QPCh. 16 - Calculate the pH of a 1-L solution containing...Ch. 16 - Prob. 16.156QPCh. 16 - You are given two beakers, one containing an...Ch. 16 - Use Le Chteliers principle to predict the effect...Ch. 16 - A 0.400 M formic acid (HCOOH) solution freezes at...Ch. 16 - The disagreeable odor of fish is mainly due to...Ch. 16 - Prob. 16.161QPCh. 16 - Prob. 16.162QPCh. 16 - Both the amide ion (NH2) and the nitride ion (N3)...Ch. 16 - When carbon dioxide is bubbled through a clear...Ch. 16 - Explain the action of smelling salt, which is...Ch. 16 - About half of the hydrochloric acid produced...Ch. 16 - Which of the following does not represent a Lewis...Ch. 16 - Determine whether each of the following statements...Ch. 16 - How many milliliters of a strong monoprotic acid...Ch. 16 - Hemoglobin (Hb) is a blood protein that is...Ch. 16 - Prob. 16.171QPCh. 16 - Calculate the pH of a solution that is 1.00 M HCN...Ch. 16 - Tooth enamel is largely hydroxyapatite...Ch. 16 - Prob. 16.174QPCh. 16 - Prob. 16.175QPCh. 16 - Prob. 16.176QPCh. 16 - Sulfuric acid (H2SO4) accounts for as much as 80...Ch. 16 - A 1-87-g sample of Mg reacts with 80.0 mL of a HCl...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY