The equilibrium constant for the given reaction has to be calculated. Concept Information: Acid ionization constant K a : Acids ionize in water. Strong acids ionize completely whereas weak acids ionize to some limited extent. The degree to which a weak acid ionizes depends on the concentration of the acid and the equilibrium constant for the ionization. The ionization of a weak acid HA can be given as follows, HA (aq) → H + (aq) + A - (aq) The equilibrium expression for the above reaction is given below. K a = [ H + ][A - ] [ HA] Where, K a is acid ionization constant, [ H + ] is concentration of hydrogen ion [ A - ] is concentration of acid anion [ HA] is concentration of the acid Autoionization of water: The equation of equilibrium for autoionization of water is, H 2 O → H + + OH - K w = [H + ][OH - ] The equilibrium expression for water at 25 o C is, [H + ][OH - ] = 1 × 10 -14 Taking negative logarithm on both sides, we get − log ( [H + ][OH - ])= -log(1 × 10 -14 ) ( − log [H + ])+(-log[OH - ])= 14 ) The relationship between the hydronium ion concentration and the hydroxide ion concentration is given by the equation, pH + pOH = 14, at 25 o C As pOH and pH are opposite scale, the total of both has to be equal to 14. Therefore, K w = [H + ][OH - ] =1 × 10 -14 To Calculate: The equilibrium constant for the given reaction
The equilibrium constant for the given reaction has to be calculated. Concept Information: Acid ionization constant K a : Acids ionize in water. Strong acids ionize completely whereas weak acids ionize to some limited extent. The degree to which a weak acid ionizes depends on the concentration of the acid and the equilibrium constant for the ionization. The ionization of a weak acid HA can be given as follows, HA (aq) → H + (aq) + A - (aq) The equilibrium expression for the above reaction is given below. K a = [ H + ][A - ] [ HA] Where, K a is acid ionization constant, [ H + ] is concentration of hydrogen ion [ A - ] is concentration of acid anion [ HA] is concentration of the acid Autoionization of water: The equation of equilibrium for autoionization of water is, H 2 O → H + + OH - K w = [H + ][OH - ] The equilibrium expression for water at 25 o C is, [H + ][OH - ] = 1 × 10 -14 Taking negative logarithm on both sides, we get − log ( [H + ][OH - ])= -log(1 × 10 -14 ) ( − log [H + ])+(-log[OH - ])= 14 ) The relationship between the hydronium ion concentration and the hydroxide ion concentration is given by the equation, pH + pOH = 14, at 25 o C As pOH and pH are opposite scale, the total of both has to be equal to 14. Therefore, K w = [H + ][OH - ] =1 × 10 -14 To Calculate: The equilibrium constant for the given reaction
Solution Summary: The author explains that the equilibrium constant for the given reaction has to be calculated. The degree to which a weak acid ionizes depends on the concentration of the acid
Laser. Indicate the relationship between metastable state and stimulated emission.
The table includes macrostates characterized by 4 energy levels (&) that are
equally spaced but with different degrees of occupation.
a) Calculate the energy of all the macrostates (in joules). See if they all have
the same energy and number of particles.
b) Calculate the macrostate that is most likely to exist. For this macrostate,
show that the population of the levels is consistent with the Boltzmann
distribution.
macrostate 1 macrostate 2 macrostate 3
ε/k (K) Populations
Populations
Populations
300
5
3
4
200
7
9
8
100
15
17
16
0
33
31
32
DATO: k = 1,38×10-23 J K-1
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.