Concept explainers
Interpretation: Given set of species has to be classified as Bronsted acid or base, or both.
Concept Introduction: Bronsted's definition is based on the
Example: Consider the following reaction.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
Bronsted base accepts a proton to give a protonated species known as conjugate acid and Bronsted acid loses a proton deprotonated species is known as conjugate base. When a proton is removed the resulting species will have a negative charge and when a proton is added the resulting species will have a positive charge.
Answer to Problem 16.3QP
Answer
The species (a) is both Bronsted acid and Bronsted base.
The species (b) is Bronsted base.
The species (c) is Bronsted acid.
The species (d) is Bronsted base.
The species (e) is Bronsted acid.
The species (f) is Bronsted base.
The species (g) is Bronsted base.
The species (h) is Bronsted base.
The species (i) is Bronsted acid.
The species (j) is Bronsted acid.
Explanation of Solution
(a)
To classify:
To identify the species as Bronsted acid.
Water molecule loses a proton to form a conjugate base as shown above. Therefore, water can act as Bronsted acid.
To identify the species as Bronsted base.
Water molecule accepts a proton to form hydronium ion. Therefore, water can act as Bronsted base.
From this we can conclude that water can act as both Bronsted acid and Bronsted base.
(b)
To classify:
To identify the species as Bronsted acid.
Hydroxide ion cannot lose a proton to form a conjugate base. Therefore, hydroxide ion cannot act as Bronsted acid.
To identify the species as Bronsted base.
Hydroxide ion accepts a proton to form water molecule. Therefore, hydroxide ion can act as Bronsted base.
From this we can conclude that hydroxide ion can only act as Bronsted base.
(c)
To classify:
To identify the species as Bronsted acid.
The hydronium ion can lose a proton to form a conjugate base as shown above. Therefore, hydronium ion can act as Bronsted acid.
To identify the species as Bronsted base.
Hydronium ion cannot accept proton to form a conjugate acid.
From this we can conclude that hydronium ion can act only as Bronsted acid.
(d)
To classify:
To identify the species as Bronsted acid.
Ammonia cannot lose a proton to form a conjugate base. Therefore, ammonia cannot act as Bronsted acid.
To identify the species as Bronsted base.
Ammonia accepts a proton to form ammonium ion. Therefore, ammonia ion can act as Bronsted base.
From this we can conclude that ammonia can act only as Bronsted base.
(e)
To classify:
To identify the species as Bronsted acid.
The ammonium ion can lose a proton to form a conjugate base as shown above. Therefore ammonium ion can act as Bronsted acid.
To identify the species as Bronsted base.
Ammonium ion cannot accept proton to form a conjugate acid.
From this we can conclude that ammonium ion can act only as Bronsted acid.
(f)
To classify:
To identify the species as Bronsted acid.
To identify the species as Bronsted base.
From this we can conclude that
(g)
To classify:
To identify the species as Bronsted acid.
To identify the species as Bronsted base.
From this we can conclude that
(h)
To classify:
To identify the species as Bronsted acid.
Explanation:
To identify the species as Bronsted base.
From this we can conclude that
(i)
To classify:
To identify the species as Bronsted acid.
The
To identify the species as Bronsted base.
From this we can conclude that
(j)
To classify:
To identify the species as Bronsted acid.
The
To identify the species as Bronsted base.
From this we can conclude that
The given set of species are classified as Bronsted acid or base, or both.
Want to see more full solutions like this?
Chapter 16 Solutions
Chemistry: Atoms First
- Please correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forward(11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)!arrow_forward
- . 3°C with TH 12. (10pts total) Provide the major product for each reaction depicted below. If no reaction occurs write NR. Assume heat dissipation is carefully controlled in the fluorine reaction. 3H 24 total (30) 24 21 2h • 6H total ● 8H total 34 래 Br2 hv major product will be most Substituted 12 hv Br NR I too weak of a participate in P-1 F₂ hv Statistically most favored product will be major = most subst = thermo favored hydrogen atom abstractor to LL Farrow_forwardFive chemistry project topic that does not involve practicalarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Q2. Consider the hydrogenation of ethylene C2H4 + H2 = C2H6 The heats of combustion and molar entropies for the three gases at 298 K are given by: C2H4 C2H6 H2 AH comb/kJ mol¹ -1395 -1550 -243 Sº / J K¹ mol-1 220.7 230.4 131.1 The average heat capacity change, ACP, for the reaction over the temperature range 298-1000 K is 10.9 J K¹ mol¹. Using these data, determine: (a) the standard enthalpy change at 800 K (b) the standard entropy change at 800 K (c) the equilibrium constant at 800 K.arrow_forward13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)! Googlearrow_forwardPrint Last Name, First Name Initial Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 4th total • 6H total 래 • 4H total 21 total ZH 2H Statistical H < 3° C-H weakest - product abstraction here bund leads to thermo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Product 6 Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Cl Waterfoxarrow_forward
- 10. (5pts) Provide the complete arrow pushing mechanism for the chemical transformation → depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O II HA H CH3O-H H ①arrow_forwardDo the Lone Pairs get added bc its valence e's are a total of 6 for oxygen and that completes it or due to other reasons. How do we know the particular indication of such.arrow_forwardNGLISH b) Identify the bonds present in the molecule drawn (s) above. (break) State the function of the following equipments found in laboratory. Omka) a) Gas mask b) Fire extinguisher c) Safety glasses 4. 60cm³ of oxygen gas diffused through a porous hole in 50 seconds. How long w 80cm³ of sulphur(IV) oxide to diffuse through the same hole under the same conditions (S-32.0.0-16.0) (3 m 5. In an experiment, a piece of magnesium ribbon was cleaned with steel w clean magnesium ribbon was placed in a crucible and completely burnt in oxy cooling the product weighed 4.0g a) Explain why it is necessary to clean magnesium ribbon. Masterclass Holiday assignmen PB 2arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning