The pH of a 0.045- M aqueous solution of a weak base B with a K b of 4.2 × 10 − 10 has to be calculated Concept Information: Strong base and weak base: Strong base dissociates into its constituent ions fully. It produces more of hydroxide ions while dissolved in water. Weak bases partially dissociates into its constituent ions. According to Bronsted-Lowry, strong base is a good proton acceptor whereas weak base is a poor proton acceptor Since, the ionization of a weak base is incomplete, it is treated in the same way as the ionization of a weak acid. The ionization of a weak base B is given by the below equation. B (aq) +H 2 O (l) → HB + (aq) +OH - (aq) The equilibrium expression for the ionization of weak base B will be, K b = [ HB + ] [ OH - ] [ B ] Where, K b is base ionization constant, [ OH − ] is concentration of hydroxide ion [ HB + ] is concentration of conjugate acid [ B] is concentration of the base pOH definition: The pOH of a solution is defined as the negative base-10 logarithm of the hydroxide ion [OH - ] concentration. pOH scale is analogous to pH scale. pOH = -log[OH - ] Relationship between pH and pOH pOH is similar to pH . The only difference is that in pOH the concentration of hydroxide ion is used as a scale while in pH , the concentration of hydronium ion is used. The relationship between the hydronium ion concentration and the hydroxide ion concentration is given by the equation, pH + pOH = 14, at 25 o C As pOH and pH are opposite scale, the total of both has to be equal to 14. To Calculate: The pH of the given weak base B
The pH of a 0.045- M aqueous solution of a weak base B with a K b of 4.2 × 10 − 10 has to be calculated Concept Information: Strong base and weak base: Strong base dissociates into its constituent ions fully. It produces more of hydroxide ions while dissolved in water. Weak bases partially dissociates into its constituent ions. According to Bronsted-Lowry, strong base is a good proton acceptor whereas weak base is a poor proton acceptor Since, the ionization of a weak base is incomplete, it is treated in the same way as the ionization of a weak acid. The ionization of a weak base B is given by the below equation. B (aq) +H 2 O (l) → HB + (aq) +OH - (aq) The equilibrium expression for the ionization of weak base B will be, K b = [ HB + ] [ OH - ] [ B ] Where, K b is base ionization constant, [ OH − ] is concentration of hydroxide ion [ HB + ] is concentration of conjugate acid [ B] is concentration of the base pOH definition: The pOH of a solution is defined as the negative base-10 logarithm of the hydroxide ion [OH - ] concentration. pOH scale is analogous to pH scale. pOH = -log[OH - ] Relationship between pH and pOH pOH is similar to pH . The only difference is that in pOH the concentration of hydroxide ion is used as a scale while in pH , the concentration of hydronium ion is used. The relationship between the hydronium ion concentration and the hydroxide ion concentration is given by the equation, pH + pOH = 14, at 25 o C As pOH and pH are opposite scale, the total of both has to be equal to 14. To Calculate: The pH of the given weak base B
Solution Summary: The author explains how the pH of a 0.045-M reaqueous solution of weak base B is calculated. Strong base dissociates into its constituent ions fully.
The pH of a 0.045-M aqueous solution of a weak base
B with a
Kb of
4.2×10−10 has to be calculated
Concept Information:
Strong base and weak base:
Strong base dissociates into its constituent ions fully. It produces more of hydroxide ions while dissolved in water. Weak bases partially dissociates into its constituent ions.
According to Bronsted-Lowry, strong base is a good proton acceptor whereas weak base is a poor proton acceptor
Since, the ionization of a weak base is incomplete, it is treated in the same way as the ionization of a weak acid.
The ionization of a weak base
B is given by the below equation.
B(aq)+H2O(l)→HB+(aq)+OH-(aq)
The equilibrium expression for the ionization of weak base
B will be,
Kb=[HB+][OH-][B]
Where,
Kb is base ionization constant,
[OH−] is concentration of hydroxide ion
[HB+] is concentration of conjugate acid
[B] is concentration of the base
pOHdefinition:
The
pOH of a solution is defined as the negative base-10 logarithm of the hydroxide ion
[OH-] concentration.
pOH scale is analogous to pH scale.
pOH=-log[OH-]
Relationship betweenpH andpOH
pOH is similar to
pH. The only difference is that in
pOH the concentration of hydroxide ion is used as a scale while in
pH, the concentration of hydronium ion is used.
The relationship between the hydronium ion concentration and the hydroxide ion concentration is given by the equation,
pH+pOH=14,at25oC
As
pOH and
pH are opposite scale, the total of both has to be equal to 14.
Hi!!
Please provide a solution that is handwritten. Ensure all figures, reaction mechanisms (with arrows and lone pairs please!!), and structures are clearly drawn to illustrate the synthesis of the product as per the standards of a third year organic chemistry course. ****the solution must include all steps, mechanisms, and intermediate structures as required.
Please hand-draw the mechanisms and structures to support your explanation. Don’t give me AI-generated diagrams or text-based explanations, no wordy explanations on how to draw the structures I need help with the exact mechanism hand drawn by you!!! I am reposting this—ensure all parts of the question are straightforward and clear or please let another expert handle it thanks!!
Hi!!
Please provide a solution that is handwritten. Ensure all figures, reaction mechanisms (with arrows and lone pairs please!!), and structures are clearly drawn to illustrate the synthesis of the product as per the standards of a third year organic chemistry course. ****the solution must include all steps, mechanisms, and intermediate structures as required.
Please hand-draw the mechanisms and structures to support your explanation. Don’t give me AI-generated diagrams or text-based explanations, no wordy explanations on how to draw the structures I need help with the exact mechanism hand drawn by you!!! I am reposting this—ensure all parts of the question are straightforward and clear or please let another expert handle it thanks!!
. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the
molecule depicted below.
Bond B
2°C. +2°C. < cleavage
Bond A
• CH3 + 26. t cleavage
2°C• +3°C•
Bond C
Cleavage
CH3 ZC
'2°C. 26.
E
Strongest
3°C. 2C.
Gund
Largest
BDE
weakest bond
In that molecule
a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in
appropriate boxes.
Weakest
C bond
Produces
A
Weakest
Bond
Most
Strongest
Bond
Stable radical
Strongest Gund
produces least stable
radicals
b. (4pts) Consider the relative stability of all cleavage products that form when bonds A,
B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B,
and C are all carbon radicals.
i. Which ONE cleavage product is the most stable? A condensed or bond line
representation is fine.
人
8°C. formed in
bound C
cleavage
ii. Which ONE cleavage product is the least stable? A condensed or bond line
representation is fine.
methyl radical
•CH3
formed in
bund A Cleavage
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.