Concept explainers
The 12-lb uniform disk shown has a radius of r = 3.2 in. and rotates counterclockwise. Its center C is constrained to move in a slot cut in the vertical member AB, and an 11-lb horizontal force P is applied at B to maintain contact at D between the disk and the vertical wall. The disk moves downward under the influence of gravity and the friction at D. Knowing that the coefficient of kinetic friction between the disk and the wall is 0.12 and neglecting friction in the vertical slot, determine (a) the angular acceleration of the disk, (b) the acceleration of the center C of the disk.
Fig. P16.57
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
VECTOR MECHANIC
Additional Engineering Textbook Solutions
DeGarmo's Materials and Processes in Manufacturing
Thermodynamics: An Engineering Approach
Heating Ventilating and Air Conditioning: Analysis and Design
Machine Elements in Mechanical Design (6th Edition) (What's New in Trades & Technology)
Mechanics of Materials (10th Edition)
Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering)
- A 81-lb sheet of plywood rests on two small wooden blocks as shown. It is allowed to lean 20° from the vertical under the action of a force P which is perpendicular to the sheet. Friction at all surfaces of blocks A and B is sufficient to prevent slipping. Determine the magnitude P and the vertical reaction forces at A and B. D 4.0' 1.0' E A 5.2' DE = 3.3 ft 1.8' B 1 -20⁰arrow_forwardA uniform disk of mass m = 4 kg and radius r = 150 mm is supported by a belt ABCD that is bolted to the disk at B and C. If the belt suddenly breaks at a point located between A and B, draw the FBD and KD for the disk immediately after the break.arrow_forward4. A 300-lb cabinet is mounted on casters that can be locked to prevent their rotation. The coefficient of static friction between the floor and each caster is 0.23. Assuming that the casters at both A and B are locked, determine (a) the force Prequired to move the cabinet to the right, (b) the largest allowable value of h if the cabinet is not to tip over. В 24 in.arrow_forward
- 4. A garage door (8 ft by 10 ft) weighs 200-lbs is pulled with a constant 25-lb horizontal force to open it as shown. Assume the door rollers (A & B) are frictionless and the door does not rotate or lift off rollers A & B. G is the center of mass of the door. Determine: a. Reactions forces at each roller support (A & B) b. The constant acceleration of the door. c. The time for the door to move 10 feet. Assume it starts from rest. Draw FBD and write governing equations. Show all work. 8 ft 1 ft 5 ft 4 ft -8 ft 10 ft B 3 ft 25 lbsarrow_forwardThe double pulley shown has a weight of 35.0 lb and a centroidal radius of gyration of 5.0 in. Cylinder A (25.0 lb) and block B (16 lb) are attached to cords that wrap around pulleys in the manner shown. The coefficient of kinetic friction between block B and the surface is 0.25. Knowing that the system is released from rest at the position shown (h = 4 ft), determine the velocity of cylinder A when it strikes the ground. 6 in. A h 10 in. Barrow_forwardthe uniform slender rod AB shown of weight w is supported by A peg at C and its end A rests against a vertical wall. the coefficients of friction at A and C are equal to f. find the ratio L/a when motion is impending. if θ=30˚ and f=0.3, find the ratio L/a.arrow_forward
- Please show all steps.arrow_forwardThe 200MM Y 1.2KG connecting rod and the 1.5kg P piston are connected through the mechanism shown. The 90mm AB crank rotates at a constant 1200 rpm counterclockwise. Determine when θ = 40 °, the reactions in joints B and D, do not consider friction between the cylinder and the piston Parrow_forwardA clockwise couple M is applied to the circular cylinder as shown. Determine the value of M required to initiate motion for the conditions mg = 4.6 kg, mc - 4.7 kg, (s)B=0.46, (c=0.34, and r=0.21 m. Friction between the cylinder C and the block B is negligible. (s)c Answer: M = mc M mg (₂)B N.marrow_forward
- Two uniform, solid cylinders of radius R and total mass M are connectedalong their common axis by a short, light rod and rest on a horizontaltabletop. A frictionless ring at the rod’s center is attached toa spring of force constant k; the spring’s other end is fixed. The cylindersare pulled to the left a distance x, stretching the spring, then releasedfrom rest. Due to friction between the tabletop and the cylinders, the cylindersroll without slipping as they oscillate. Show that the motion of thecenter of mass of the cylinders is simple harmonic, and find its period.arrow_forwardThe 200-mm-radius brake drum is attached to a larger Bywheel. The total mass moment of inertia of the flywheel and drum is 19 kg. and the coefficient of kinetic friction between the drum and the brake shoe is 035, Knowing that the initial angular velocity of the flywheel is 180 rpm clockwise, determine the vertical force P that must be applied to the pedal C if the system is to stop in 100 revolutions. 150 mm 250 mm B ne: P= 172.88 N C 375 mm 200 mmarrow_forwardRequired information NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. A 3.5-kg slender rod AB and a 2-kg slender rod BC are connected by a pin at B and by the cord AC. The assembly can rotate in a vertical plane under the combined effect of gravity and a couple M applied to rod BC. In the position shown, the angular velocity of the assembly is zero and the tension in cord AC is equal to 26.8 N. 300 mm A 400 mm 400 mm M B Determine the angular acceleration of the assembly. (You must provide an answer before moving to the next part.) rad/s²0. The angular acceleration of the assembly isarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY