
Concept explainers
Each of the double pulleys shown has a mass moment of inertia of 15 lb·ft·s2 and is initially at rest. The outside radius is 18 in., and the inner radius is 9 in. Determine (a) the angular acceleration of each pulley, (b) the angular velocity of each pulley after point A on the cord has moved 10 ft.
Fig. P16.34
(a)

Find the angular acceleration of the pulley 1
Find the angular acceleration of the pulley 2
Find the angular acceleration of the pulley 3
Find the angular acceleration of the pulley 4
Answer to Problem 16.34P
The angular acceleration of the pulley 1
The angular acceleration of the pulley 2
The angular acceleration of the pulley 3
The angular acceleration of the pulley 4
Explanation of Solution
The mass moment of inertia of the double pulleys
The outside radius of the pulley
The inner radius of the pulley
The finial angular velocity of the pulley
The load of the pulley 1
The load of the pulley 2
The left side load of the pulley 3
The right side load of the pulley 3
The load of the pulley 4
Calculation:
Consider the acceleration due to gravity (g) is
Case 1:
Convert the unit of the outside radius
Convert the unit of the inner radius
Show the free body diagram of the double pulley 1 as in Figure 1.
Here,
Refer to Figure 1.
Calculate the angular acceleration of the pulley 1
Calculate the moment about point O by applying the equation of equilibrium:
Hence, the angular acceleration of the pulley 1
Case 2:
Calculate the mass of the pulley 2
Substitute
Show the free body diagram of the double pulley 2 as in Figure 2.
Refer to Figure 2.
Calculate the moment about point O by applying the equation of equilibrium:
Calculate the angular acceleration of the pulley 2
Substitute
Hence, the angular acceleration of the pulley 2
Case 3:
Calculate the left side mass of the pulley 3
Substitute
Calculate the right side mass of the pulley 3
Substitute
Show the free body diagram of the double pulley 3 as in Figure 3.
Refer to Figure 3.
Calculate the moment about point O by applying the equation of equilibrium:
Calculate the angular acceleration of the pulley 3
Substitute
Hence, the angular acceleration of the pulley 3
Case 4:
Calculate the left side mass of the pulley 4
Substitute
Show the free body diagram of the double pulley 4 as in Figure 4.
Refer to Figure 4.
Calculate the moment about point O by applying the equation of equilibrium:
Calculate the angular acceleration of the pulley 4
Substitute
Hence, the angular acceleration of the pulley 4
(b)

Find the angular velocity of the pulley 1
Find the angular velocity of the pulley 2
Find the angular velocity of the pulley 3
Find the angular velocity of the pulley 4
Answer to Problem 16.34P
The angular velocity of the pulley 1
The angular velocity of the pulley 2
The angular velocity of the pulley 3
The angular velocity of the pulley 4
Explanation of Solution
The mass moment of inertia of the double pulleys
The outside radius of the pulley
The inner radius of the pulley
The finial angular velocity of the pulley
The load of the pulley 1
The load of the pulley 2
The left side load of the pulley 3
The right side load of the pulley 3
The load of the pulley 4
The moved distance of the point A (l) is
Calculation:
Refer part (a).
Case 1:
Calculate the angle of the pulley 1
Substitute
Calculate the angular velocity of the pulley 1
Substitute
Hence, the angular velocity of the pulley 1
Case 2:
Calculate the angle of the pulley 2
Substitute
Calculate the angular velocity of the pulley 2
Substitute
Hence, the angular velocity of the pulley 2
Case 3:
Calculate the angle of the pulley 3
Substitute
Calculate the angular velocity of the pulley 3
Substitute
Hence, the angular velocity of the pulley 3
Case 4:
Calculate the angle of the pulley 4
Substitute
Calculate the angular velocity of the pulley 4
Substitute
Hence, the angular velocity of the pulley 4
Want to see more full solutions like this?
Chapter 16 Solutions
VECTOR MECHANICS FOR ENGINEERS W/CON >B
Additional Engineering Textbook Solutions
Management Information Systems: Managing The Digital Firm (16th Edition)
Database Concepts (8th Edition)
Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)
Elementary Surveying: An Introduction To Geomatics (15th Edition)
Electric Circuits. (11th Edition)
Fluid Mechanics: Fundamentals and Applications
- Aswatan gas occupies a space of 0.3 millike cube at a pressure of 2 bar and temperature of 77 degree Celsius it is indicate at constant volume at pressure of 7 parts determine temperature at the end of process mass of a gas changing internal energy change in enthalpy during the process assume CP is equal to 10 1.005 CV is equal to 0.712 is equal to 287arrow_forwardAUTO CONTROLDNO COPIED ANSWERS, SHOW FULL SOLUTION The differential equation of a DC motor can be described by the following equation Find the transfer function between the applied voltage ( Va)and the motor speed (thetadot m). What is the steady state speed of the motor after a voltage (Va = 10V) has been applied. Find the transfer function between the applied voltage (Va) and the shaft angle (thetadot m) .arrow_forwardAuto Controls DONT COPY ANSWERS Perform the partial fraction expansion of the following transfer function and find the impulse response: G(s) = (s/2 + 5/3) / (s^2 + 4s + 6) G(s) =( 6s^2 + 50) / (s+3)(s^2 +4)arrow_forward
- Battery operated train Mueh Groll CD Af Pair 160,000 kg 0.0005 0.15 19 5m² 1.2kg/m³ 0.98 0.9 Tet neng 0.88 Tesla Prated Tesla Trated Ywheel ng Joyle 2 270 kW 440NM 0,45m 20 8.5kg m Consider a drive cycle of a 500km trip with 3 stops in the middle. Other than the acceleration and deceleration associated with the three stops, the tran maintains. constant cruise speed velocity of 324 km/hr. The tran will fast charge at each stop for 15 min at a rate Peharge = 350 kW Εμ (MN 15MIN Stop w charging (350kW) GMIJ t 6MM 6AW 1) calculate the battery power required to mantain. constant velocity of 324km/hr 2) determine the battery energy, energy required to constant velocity portion of this drive. Cover the 3) calculate the battery energy required to accelerate the train to 324/04/hr. 4) calculate the battery energy that is either fost in deceleration or recovered due to regenerative breaking etcarrow_forwardA 22-lb block B rests as shown on a 28-lb bracket A. The coefficients of friction are μs=0.30μs=0.30 and μk=0.25μk=0.25 between block B and bracket A, and there is no friction in the pulley or between the bracket and the horizontal surface. solved in a previous part. max weight of block C if block B is not to slide on bracket A is 5.045 lbs. Please solve for the acceleration of each Blockarrow_forwardTest 1 .DOCX * A File Edit View Tools Help INDUSTRIAL ENGINEERING PROGRAMME IMB 411-INDUSTRIAL LOGISTICS TEST 1- SEPTEMBER 12, 2012 Instructions: Answer all questions. Time allowed is 1.5 hours. Identify your script with your student number ONLY (Do not write your name). 1. Define the following terms (i) Logistics management (ii) Supply chain management (iii) Vertical integration in a supply chain (3 Marks) (3 Marks) (3 Marks) 2. (a) Using examples of your choice, briefly discuss the following levels of customer service (1) Pre-transaction elements (ii) Transaction elements (4 Marks) (4 Marks) (iii) Post-transaction elements (4 Marks) (b) "The challenge facing Dumelang Enterprise (Pty) Ltd is to establish the real profitability of their customers and to develop service strategies that will improve the profitability of all customers". As a logistics consultant, briefly discuss how you can advise Dumelang's customer service management. 3. (a) List the three main forms of inventory in a…arrow_forward
- It is decided to install several single-jet Pelton wheels to produce a total power of 18 MW. The available head is 246 m. The wheel rotational speed is 650 rpm and the speed ratio (❤) = 0.46. The diameter of the nozzle (jet) is limited to be 0.167 m with a Cv of 0.95. The efficiency of each turbine is 87%. Determine: (1) The number of Pelton wheels to be used, and (2) The bucket angle.arrow_forwardPlease show All work and fill it in thermodynamicsarrow_forwardQuick solution required. My request, Don't use Ai. Mechanical engineeringarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





