Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf
Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf
9th Edition
ISBN: 9781259989452
Author: Hayt
Publisher: Mcgraw Hill Publishers
bartleby

Videos

Question
Book Icon
Chapter 16, Problem 7E

(a)

To determine

The determinant and the input impedance of the network when ω=100πrad/s.

(a)

Expert Solution
Check Mark

Answer to Problem 7E

The determinant of the network is ΔY=524.1289.95ο and the input admittance of the network is Yin=0.03179.29οS.

Explanation of Solution

Given data:

The given diagram is shown in Figure 1.

Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf, Chapter 16, Problem 7E , additional homework tip  1

Calculation:

The conversion of mH into H is given by,

1mH=1×103H

The conversion of 100mH into H is given by,

100mH=0.1H

The conversion of mH into H is given by,

1mH=1×103H

The conversion of 50mH into H is given by,

50mH=0.050H

The conversion of nF into F is given by,

1nF=1×109F

The conversion of 20nF into F is given by,

20nF=20×109F

For 0.1H inductor,

The admittance of inductor is given by,

YL=1jωL

Substitute 0.1H for L in the above expression.

YL=1jω(0.1H)=10jωS=10j100πS=0.032jS

For 0.05H inductor,

The admittance of inductor is given by,

YL=1jωL

Substitute 0.05H for L in the above expression.

YL=1jω(0.05H)=20jωS=20j100πS=j0.064S

For 20×109F capacitor,

The admittance of capacitor is given by,

YC=jωC

Substitute 20×109F for C in the above expression.

YC=jω(20×109F)=jω(2×108)S=j100π(2×108)S=j6.28×106S

For 6Ω resistor,

The admittance of inductor is given by,

YR=1R

Substitute 6Ω for R in the above expression.

YR=16Ω=0.166S

The required diagram is shown in Figure 2.

Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf, Chapter 16, Problem 7E , additional homework tip  2

The inductor and the capacitor are in series.

The modified diagram is shown in Figure 3.

Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf, Chapter 16, Problem 7E , additional homework tip  3

The expression for Y1 is given by,

Y1=10jω{jω(2×108)}=10jω{jω(2×108)}10jω+{jω(2×108)}=jω(20×108)10ω2(2×108)S

The admittance Y1 and resistance are connected in parallel.

The modified diagram is shown in Figure 4.

Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf, Chapter 16, Problem 7E , additional homework tip  4

The expression of Y2 is given by,

Y2=0.1666+jω(20×108)10ω2(2×108)=0.1666(10ω2(2×108))+jω(20×108)10ω2(2×108)=1.666ω2(3.332×109)+jω(20×108)10ω2(2×108)

The admittance Y2 and inductor are connected in series.

The modified diagram is shown in Figure 5.

Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf, Chapter 16, Problem 7E , additional homework tip  5

The expression of Y3 is given by,

1Y3=jω10+1Y2

Substitute 1.666ω2(3.332×109)+jω(20×108)10ω2(2×108) for Y2 in the above expression.

1Y3=0.1jω+10ω2(2×108)1.666ω2(3.332×109)+jω(20×108)=0.1jω(1.666ω2(3.332×109)+jω(20×108))+10ω2(2×108)1.666ω2(3.332×109)+jω(20×108)=(0.1666jωjω3(3.332×1010)+jω(20×108))+10ω2(2×108)1.666ω2(3.332×109)+jω(20×108)=(10+0.1666jωjω3(3.332×1010)+ω2(4×108))1.666ω2(3.332×109)+jω(20×108)

Further solve as,

Y3=1.666ω2(3.332×109)+jω(20×108)10+0.1666jωjω3(3.332×1010)+ω2(4×108)

The input admittance is the parallel combination of the inductor and Y3.

The expression of the input admittance Yin is given by,

Yin=120jω+Y3

Substitute 1.666ω2(3.332×109)+jω(20×108)10+0.1666jωjω3(3.332×1010)+ω2(4×108) for Y3 in the above expression.

Yin=120jω+1.666ω2(3.332×109)+jω(20×108)10+0.1666jωjω3(3.332×1010)+ω2(4×108)={10+0.1666jωjω3(3.332×1010)+ω2(4×108)+20jω(1.666ω2(3.332×109)+jω(20×108))}20jω(10+0.1666jωjω3(3.332×1010)+ω2(4×108))=10+0.1666jωjω3(3.332×1010)+ω2(4×108)+33.2jωjω3(66.64×109)ω2(4×106)200jω3.332ω2+ω4(66.64×1010)jω3(80×108)=10+33.366jωω2(4.04×106)jω3(6.697×108)200jω3.332ω2+ω4(66.64×1010)jω3(80×108)

Substitute 100π for ω in the above expression.

Yin={10+33.366j(100π)(100π)2(4.04×106)j(100π)3(6.697×108)}{200j(100π)3.332(100π)2+(100π)4(66.64×1010)j(100π)3(80×108)}=9.602+j10480.124328851.97+j62807.09=10480.1289.9ο334795.98169.87ο=0.03179.29ο

Mark the node voltages as V1 and V2 in Figure 1.

The required diagram is shown in Figure 6.

Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf, Chapter 16, Problem 7E , additional homework tip  6

The equation at node voltage V1 using Kirchhoff’s current law is given by,

V1(120jω)+(V1V2)(10jω)=00.05V1+(V1V2)10=010.05V110V2=0        (1)

The equation at node voltage V2 using Kirchhoff’s current law is given by,

(V2V1)(10jω)+0.166V2+V2(10jω{jω(2×108)})=0(V2V1)(10jω)+0.166V2+V2(jω(20×108)10ω2(2×108))=0(V2V1)10+0.166V2jω+V2(ω2(20×108)10ω2(2×108))=0

Substitute 100π for ω in the above expression.

(V2V1)10+0.166V2j(100π)+V2((100π)2(20×108)10(100π)2(2×108))=0(V2V1)10+jV2(52.15)V2(1.97×103)=0

10V1+(9.99+j52.15)V2=0        (2)

Write equation (1) and (2) in matrix form.

[10.0510109.99+j52.15][V1V2]=0

The determinant of the given circuit is given by,

ΔY=[10.0510109.99+j52.15]={10.05(9.99+j52.15)(10)(10)}=100.4+j524.12100=0.4+j524.12

Further solve as,

ΔY=524.1289.95ο

Conclusion:

Therefore, the determinant of the network is, ΔY=524.1289.95ο, and the input admittance of the network is Yin=0.03179.29οS.

 (b)

To determine

The voltage across the current source.

 (b)

Expert Solution
Check Mark

Answer to Problem 7E

The voltage across the current source is 3.179.29οV.

Explanation of Solution

Given data:

The value of the current source is, I=100A.

The frequency is ω=100πrad/s.

Calculation:

The required diagram is shown in Figure 7.

Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf, Chapter 16, Problem 7E , additional homework tip  7

The expression for the voltage across current source is given by,

V=YinI

Here,

V is the voltage across current source.

I is the current source.

Yin is the input admittance.

Substitute 100A for I and 0.03179.29οS for Yin in the above expression.

V=100A(0.03179.29οS)=3.179.29οV

Conclusion:

Therefore, the voltage across the current source is 3.179.29οV.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
No chatgpt pls will upvote
circuit find value of VAB using Super Position Theorem
dc circuit vth rth rl thevenin and then maximum transer and value of rl

Chapter 16 Solutions

Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf

Ch. 16.5 - Prob. 11PCh. 16.6 - Prob. 12PCh. 16 - For the following system of equations, (a) write...Ch. 16 - With regard to the passive network depicted in...Ch. 16 - Determine the input impedance of the network shown...Ch. 16 - For the one-port network represented schematically...Ch. 16 - Prob. 6ECh. 16 - Prob. 7ECh. 16 - Prob. 8ECh. 16 - Prob. 9ECh. 16 - (a) If both the op amps shown in the circuit of...Ch. 16 - Prob. 11ECh. 16 - Prob. 12ECh. 16 - Prob. 13ECh. 16 - Prob. 14ECh. 16 - Prob. 15ECh. 16 - Prob. 16ECh. 16 - Prob. 17ECh. 16 - Prob. 18ECh. 16 - Prob. 19ECh. 16 - Prob. 20ECh. 16 - For the two-port displayed in Fig. 16.49, (a)...Ch. 16 - Prob. 22ECh. 16 - Determine the input impedance Zin of the one-port...Ch. 16 - Determine the input impedance Zin of the one-port...Ch. 16 - Employ Y conversion techniques as appropriate to...Ch. 16 - Prob. 26ECh. 16 - Prob. 27ECh. 16 - Prob. 28ECh. 16 - Compute the three parameter values necessary to...Ch. 16 - It is possible to construct an alternative...Ch. 16 - Prob. 31ECh. 16 - Prob. 32ECh. 16 - Prob. 33ECh. 16 - Prob. 34ECh. 16 - The two-port networks of Fig. 16.50 are connected...Ch. 16 - Prob. 36ECh. 16 - Prob. 37ECh. 16 - Obtain both the impedance and admittance...Ch. 16 - Prob. 39ECh. 16 - Determine the h parameters which describe the...Ch. 16 - Prob. 41ECh. 16 - Prob. 42ECh. 16 - Prob. 43ECh. 16 - Prob. 44ECh. 16 - Prob. 45ECh. 16 - Prob. 46ECh. 16 - Prob. 47ECh. 16 - Prob. 48ECh. 16 - Prob. 49ECh. 16 - Prob. 50ECh. 16 - (a) Employ suitably written mesh equations to...Ch. 16 - Prob. 52ECh. 16 - Prob. 53ECh. 16 - The two-port of Fig. 16.65 can be viewed as three...Ch. 16 - Consider the two separate two-ports of Fig. 16.61....Ch. 16 - Prob. 56ECh. 16 - Prob. 57ECh. 16 - Prob. 58ECh. 16 - (a) Obtain y, z, h, and t parameters for the...Ch. 16 - Four networks, each identical to the one depicted...Ch. 16 - A cascaded 12-element network is formed using four...Ch. 16 - Prob. 62ECh. 16 - Continuing from Exercise 62, the behavior of a ray...
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Introduction to Two-Port Networks; Author: ALL ABOUT ELECTRONICS;https://www.youtube.com/watch?v=ru2ItcD6unI;License: Standard Youtube License