EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 9780100793439
Author: KALPAKJIAN
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 16, Problem 68SDP
Using a ball-peen hammer, strike the surface of aluminum sheets of various thicknesses until they develop a curvature. Describe your observations about the shapes produced.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
List the types of forming. Your listing should be based on workpiece temperature. Write down only
three advantages per each type.
In a stamping operation, a 2 mm thick stainless steel sheet with an ultimate tensile strenght of 900 MPa is used. For a given blank size of 200 mm x 200 mm,
calculate the punching force required to make a sheet metal part with 20 circle holes, each 4 mm and 10 square holes each with an edge of 5 mm. (1)
A blank workpiece with 200 mm diameter is to be blanked from 3.2-
mm-thick half-hard stainless steel (ultimate tensile strength of 650
MPa). Find (a) the diameters of blank die and punch, and (b)
blanking force.
Chapter 16 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 16 - How does sheet-metal forming differ from rolling,...Ch. 16 - What causes burrs? How can they be reduced or...Ch. 16 - Prob. 3RQCh. 16 - Describe the difference between compound,...Ch. 16 - Describe the characteristics of sheet metals that...Ch. 16 - Describe the features of forming-limit diagrams...Ch. 16 - List the properties of materials that influence...Ch. 16 - Give one specific application for each of the...Ch. 16 - Why do tubes buckle when bent? What is the effect...Ch. 16 - Define normal anisotropy, and explain why it is...
Ch. 16 - Describe earing and why it occurs.Ch. 16 - What are the advantages of rubber forming? Which...Ch. 16 - Explain the difference between deep drawing and...Ch. 16 - How is roll forming fundamentally different from...Ch. 16 - What is nesting? What is its significance?Ch. 16 - Describe the differences between compound,...Ch. 16 - What is microforming?Ch. 16 - Explain the advantages of superplastic forming.Ch. 16 - What is hot stamping? For what materials is it...Ch. 16 - What is springback? What is negative springback?Ch. 16 - Explain the differences that you have observed...Ch. 16 - Take any three topics from Chapter 2, and, with...Ch. 16 - Do the same as for Problem 16.22, but for Chapter...Ch. 16 - Identify the material and process variables that...Ch. 16 - Explain why springback in bending depends on yield...Ch. 16 - Explain why cupping tests may not predict well the...Ch. 16 - Identify the factors that influence the...Ch. 16 - Why are the beads in Fig. 16.36b placed in those...Ch. 16 - A general rule for dimensional relationships for...Ch. 16 - Section 16.2 stated that the punch stripping force...Ch. 16 - Is it possible to have ironing take place in an...Ch. 16 - Note the roughness of the periphery of the flanged...Ch. 16 - What recommendations would you make in order to...Ch. 16 - It has been stated that the quality of the sheared...Ch. 16 - Give several specific examples from this chapter...Ch. 16 - As you can see, some of the operations described...Ch. 16 - Through changes in clamping or die design, it is...Ch. 16 - How would you produce the part shown in Fig....Ch. 16 - It has been stated that the thicker the sheet...Ch. 16 - Prob. 41QTPCh. 16 - Calculate the value of R in Problem 16.41. Will...Ch. 16 - Estimate the limiting drawing ratio for the...Ch. 16 - Using Eq. (16.15) and the K value for TNT, plot...Ch. 16 - Section 16.5 states that the k values in bend...Ch. 16 - For explosive forming, calculate the peak pressure...Ch. 16 - Measure the respective areas of the solid outlines...Ch. 16 - Plot Eq. (16.6) in terms of the elastic modulus,...Ch. 16 - What is the minimum bend radius for a 1.0-mm-thick...Ch. 16 - Survey the technical literature and explain the...Ch. 16 - Using the data in Table 16.3 and referring to Eq....Ch. 16 - What is the force required to punch a square hole...Ch. 16 - In Case Study 16.2, it was stated that the reason...Ch. 16 - A cup is being drawn from a sheet metal that has a...Ch. 16 - Prob. 55QTPCh. 16 - Figure P16.57 shows a parabolic profile that will...Ch. 16 - Prob. 59SDPCh. 16 - Consider several shapes to be blanked from a large...Ch. 16 - Prob. 61SDPCh. 16 - Many axisymmetric missile bodies are made by...Ch. 16 - Metal cans are either two-piece (in which the...Ch. 16 - The design shown in Fig. P16.65 is proposed for a...Ch. 16 - Suggest consumer-product designs that could...Ch. 16 - How would you produce the part shown in Fig. 16.44...Ch. 16 - Using a ball-peen hammer, strike the surface of...Ch. 16 - Inspect a common paper punch and observe the shape...Ch. 16 - Obtain an aluminum beverage can and slit it in...Ch. 16 - Prob. 71SDPCh. 16 - Prob. 73SDPCh. 16 - On the basis of experiments, it has been suggested...Ch. 16 - Design a box that will contain a 4-in. 6-in. ...Ch. 16 - Repeat Problem 16.77, but design the box from a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Explain the principles of metal rolling in not more than 10 sentences.arrow_forwardCorrect and complete solution please don't copyarrow_forwardA compound die will be used to blank and punch a large rectangle (90x150mm blank dimensions) out of 6061ST aluminum alloy sheet stock 3.5 mm thick. The diameter of inside hole is 25 mm. The aluminum sheet metal has a tensile strength 310 MPa. Determine the minimum tonnage press (force) to perform the blanking and punching operation (1) assume that blanking and punching occur simultaneously and (2) assume that punching occurs first, then blanking, Take: Ac-0.06arrow_forward
- A solid, cylindrical workpiece made of 5052-O aluminum that is 87 mm high and 65.878 mm radius and is to be reduced in height by 30% using forging. The coefficient of friction is 0.168. 5052-O yield stress is 98.21 MPa, strain hardening exponent is 0.128 , and strength coefficient is 193.74 MPa. Determine the forging force (MN) at the end of the stroke when the height has been reduced by 30%.arrow_forwardDescribe with the aid of a neat sketches two forging processes and briefly discuss their relative merits and limitations:arrow_forwardA cup of 5o mm diameter and 20 mm height is to be produced by drawing from a 1.5 mm thick sheet metal. What is the maximum drawing force ? If ultimate tensile strength of metal is 650 MPa.arrow_forward
- A 10 mm thick plate is rolled to 7 mm thick in a rolling mill using 1000 mm diameter rigid rolls. The neutral point is located at an angle of 0.3 times the bite angle from the exit. What will be the thickness of the plate at the neutral point.arrow_forwardIllustrate the basic operations of sheet metal working, indicating on the side of each illustration the name, type of load applied and type of tools used.arrow_forwardExplain what is metal forging process? note: answer in 8-10 sentences onlyarrow_forward
- Draw and explain drop forging process. Write any three common forging materials and mention its applications.arrow_forwardIn a metal forming industry, you are assigned to setup an equipment which is required to reduce the cross section of a bar from a 100x50mm into 75x25 mm.i. Identifythetypeoftechniqueinvolvedinthisprocess. ii. Explaintheprocesswithaneatdiagram.iii. Justifythereasonfortheselectionofthisprocess.arrow_forwardThe figure below shows a symmetric plane-strain upsetting process. The process may also be thought of as a form of side extrusion. Observations show that the deformation is confined to two shear planes, each one being analogous to that seen in plane-strain cutting. You may assume that there is no friction between the work material and the tool/die walls; the uniaxial yield strength of the material is σy and is independent of strain rate and temperature, and the material behaves as a rigid plastic solid. a) Calculate the pressure (p) required for the upsetting process in terms of σy. b) If friction existed at the die walls and the frictional work (energy) dissipation was 30% of the energy required for shape change alone (part (a) above), then what would be the pressure (p)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Relationship Between Elastic Constants and Connecting Equations; Author: Engineers Academy;https://www.youtube.com/watch?v=whW5PnM7Pug;License: Standard Youtube License