OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
5th Edition
ISBN: 9781285460420
Author: John W. Moore; Conrad L. Stanitski
Publisher: Cengage Learning US
bartleby

Videos

Question
Book Icon
Chapter 16, Problem 49QRT

(a)

Interpretation Introduction

Interpretation:

The values of ΔrHο and ΔrSο for the given reaction are to be calculated and the prediction about the nature of the reaction on the basis of temperature is to be stated.

Concept Introduction:

The term entropy is used to represent the randomness in a system.  When a system moves from an ordered arrangement to a less order arrangement, then the entropy of the system increases.

(a)

Expert Solution
Check Mark

Answer to Problem 49QRT

The value of ΔrSο is -37.47 J K-1 mol-1_ and the value of ΔrHο is -851.5 kJ mol-1_.

Explanation of Solution

The given reaction is shown below.

    Fe2O3(s)+2Al(g)2Fe(s)+Al2O3(s)

The standard enthalpy change for the reaction (ΔrHο) is calculated by using the expression shown below.

  ΔrHο=mHο(products)nHο(reactants)

Where,

  • Hο(products) is the standard heat of formation of products.
  • Hο(reactants) is the standard heat of formation of reactants.
  • m is the total moles of products.
  • n is the total moles of reactants.

For the given reaction, the standard enthalpy change is calculated by the expression shown below.

  ΔrHο=[2Hfο(Fe(s))+1Hfο(Al2O3(s))][1Hfο(Fe2O3(s))+2Hfο(Al(g))]

The value of Hfο(Al2O3(s)) is 1675.7 kJ mol1.

The value of Hfο(Fe(s)) is 0 kJ mol1.

The value of Hfο(Fe2O3(s)) is 824.2 kJ mol1.

The value of Hfο(Al(g)) is 0 kJ mol1.

Substitute the values in the above expression.

  ΔrHο=[2Hfο(Fe(s))+1Hfο(Al2O3(s))][1Hfο(Fe2O3(s))+2Hfο(Al(g))]=[2×(0 kJ mol1)+1×(1675.7 kJ mol1)][1×(824.2 kJ mol1)+2×(0 kJ mol1)]=1675.7 kJ mol1+824.2 kJ mol1=-851.5 kJ mol-1_

The value of ΔrHο is -851.5 kJ mol-1_.

The standard entropy change for the reaction (ΔrSο) is calculated by using the expression shown below.

  ΔrSο=mSο(products)nSο(reactants)

Where,

  • Sο(products) is the absolute molar entropy of products.
  • Sο(reactants) is the absolute molar entropy of reactants.
  • m is the total moles of products.
  • n is the total moles of reactants.

For the given reaction, the standard entropy change is calculated by the expression shown below.

  ΔrSο=[2Sfο(Fe(s))+1Sfο(Al2O3(s))][1Sfο(Fe2O3(s))+2Sfο(Al(g))]

The value of Sfο(Al2O3(s)) is 50.92 J K1 mol1

The value of Sfο(Fe(s)) is 27.78 J K1 mol1.

The value of Sfο(Fe2O3(s)) is 87.4 J K1 mol1.

The value of Sfο(Al(g)) is 28.275 kJ mol1.

Substitute the values in the above expression.

  ΔrSο=[2Sfο(Fe(s))+1Sfο(Al2O3(s))][1Sfο(Fe2O3(s))+2Sfο(Al(g))]=[2×(27.78 J K1 mol1)+1×(50.92 J K1 mol1)][1×(84.7 J K1 mol1)+2×(28.275 kJ mol1)]=106.48 J K1 mol1143.95 J K1 mol1=-37.47 J K-1 mol-1_

The value of ΔrSο is -37.47 J K-1 mol-1_.

The value of entropy is negative; therefore, the term TΔrSο will be positive.  Enthalpy is also negative.  Therefore, the Gibbs free energy will be negative for low temperature values.  Hence, the reaction will be product-favored at low temperatures.

(b)

Interpretation Introduction

Interpretation:

The values of ΔrHο and ΔrSο for the given reaction are to be calculated and the prediction about the nature of the reaction on the basis of temperature is to be stated.

Concept Introduction:

Refer to part (a)

(b)

Expert Solution
Check Mark

Answer to Problem 49QRT

The value of ΔrSο is -121.316 J K-1 mol-1_ and the value of ΔrHο is 166.36 kJ mol-1_.

Explanation of Solution

The given reaction is shown below.

    N2(g)+2O2(g)2NO2(g)

The standard enthalpy change for the reaction (ΔrHο) is calculated by using the expression shown below.

  ΔrHο=mHο(products)nHο(reactants)

Where,

  • Hο(products) is the standard heat of formation of products.
  • Hο(reactants) is the standard heat of formation of reactants.
  • m is the total moles of products.
  • n is the total moles of reactants.

For the given reaction, the standard enthalpy change is calculated by the expression shown below.

  ΔrHο=[2Hfο(NO2(g))][1Hfο(N2(g))+2Hfο(O2(g))]

The value of Hfο(NO2(g)) is 83.18 kJ mol1.

The value of Hfο(N2(g)) is 0 kJ mol1.

The value of Hfο(O2(g)) is 0 kJ mol1.

Substitute the values in the above expression.

  ΔrHο=[2Hfο(NO2(g))][1Hfο(N2(g))+2Hfο(O2(g))]=[2×(83.18 kJ mol1)][1×(0 kJ mol1)+2×(0 kJ mol1)]=166.36 kJ mol-1_

The value of ΔrHο is 166.36 kJ mol-1_.

The standard entropy change for the reaction (ΔrSο) is calculated by using the expression shown below.

  ΔrSο=mSο(products)nSο(reactants)

Where,

  • Sο(products) is the absolute molar entropy of products.
  • Sο(reactants) is the absolute molar entropy of reactants.
  • m is the total moles of products.
  • n is the total moles of reactants.

For the given reaction, the standard entropy change is calculated by the expression shown below.

  ΔrSο=[2Sfο(NO2(g))][1Sfο(N2(g))+2Sfο(O2(g))]

The value of Sfο(NO2(g)) is 240.06 J k1 mol1.

The value of Sfο(N2(g)) is 191.16 J k1 mol1.

The value of Sfο(O2(g)) is 205.138 J k1 mol1.

Substitute the values in the above expression.

  ΔrSο=[2Sfο(NO2(g))][1Sfο(N2(g))+2Sfο(O2(g))]=[2×(240.06 J k1 mol1)][1×(191.16 J k1 mol1)+2×(205.138 J k1 mol1)]=480.12 J K1 mol1601.436 J K1 mol1=-121.316 J K-1 mol-1_

The value of ΔrSο is -121.316 J K-1 mol-1_.

The value of entropy is negative; therefore, the term TΔrSο will be positive.  Enthalpy is positive.  Therefore, the Gibbs free energy will be always positive.  Hence, the reaction will never be product-favored.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A first order reaction is 46.0% complete at the end of 59.0 minutes. What is the value of k? What is the half-life for this reaction? HOW DO WE GET THERE? The integrated rate law will be used to determine the value of k. In [A] [A]。 = = -kt What is the value of [A] [A]。 when the reaction is 46.0% complete?
3. Provide the missing compounds or reagents. 1. H,NNH КОН 4 EN MN. 1. HBUCK = 8 хно Panely prowseful kanti-chuprccant fad, winddively, can lead to the crading of deduc din-willed, tica, The that chemooices in redimi Грин. " like (for alongan Ridovi MN نيا . 2. Cl -BuO 1. NUH 2.A A -BuOK THE CF,00,H Ex 5)
2. Write a complete mechanism for the reaction shown below. NaOCH LOCH₁ O₂N NO2 CH₂OH, 20 °C O₂N NO2

Chapter 16 Solutions

OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)

Ch. 16.5 - Prob. 16.8ECh. 16.6 - Prob. 16.9CECh. 16.6 - In the text we concluded that the reaction to...Ch. 16.6 - Prob. 16.10CECh. 16.6 - Prob. 16.6PSPCh. 16.7 - Prob. 16.7PSPCh. 16.7 - Prob. 16.8PSPCh. 16.7 - Prob. 16.9PSPCh. 16.8 - Predict whether each reaction is reactant-favored...Ch. 16.9 - Prob. 16.13ECh. 16.9 - Prob. 16.11PSPCh. 16.9 - Prob. 16.12PSPCh. 16.9 - Prob. 16.14ECh. 16.11 - All of these substances are stable with respect to...Ch. 16 - Define the terms product-favored System and...Ch. 16 - What are the two ways that a final chemical state...Ch. 16 - Define the term entropy, and give an example of a...Ch. 16 - Prob. 4QRTCh. 16 - Prob. 5QRTCh. 16 - Prob. 6QRTCh. 16 - Prob. 7QRTCh. 16 - Prob. 8QRTCh. 16 - Prob. 9QRTCh. 16 - Prob. 10QRTCh. 16 - Prob. 11QRTCh. 16 - Prob. 12QRTCh. 16 - Prob. 13QRTCh. 16 - Prob. 14QRTCh. 16 - Prob. 15QRTCh. 16 - Prob. 16QRTCh. 16 - Prob. 17QRTCh. 16 - Suppose you have four identical molecules labeled...Ch. 16 - For each process, tell whether the entropy change...Ch. 16 - Prob. 20QRTCh. 16 - For each situation described in Question 13,...Ch. 16 - Prob. 22QRTCh. 16 - Prob. 23QRTCh. 16 - Prob. 24QRTCh. 16 - Prob. 25QRTCh. 16 - Prob. 26QRTCh. 16 - Prob. 27QRTCh. 16 - Prob. 28QRTCh. 16 - Prob. 29QRTCh. 16 - Prob. 30QRTCh. 16 - Prob. 31QRTCh. 16 - Diethyl ether, (C2H5)2O, was once used as an...Ch. 16 - Calculate rS for each substance when the quantity...Ch. 16 - Prob. 34QRTCh. 16 - Prob. 35QRTCh. 16 - Check your predictions in Question 28 by...Ch. 16 - Prob. 37QRTCh. 16 - Prob. 38QRTCh. 16 - Prob. 39QRTCh. 16 - Prob. 40QRTCh. 16 - Prob. 41QRTCh. 16 - Prob. 42QRTCh. 16 - Prob. 43QRTCh. 16 - Prob. 44QRTCh. 16 - Prob. 45QRTCh. 16 - Prob. 46QRTCh. 16 - Hydrogen bums in air with considerable heat...Ch. 16 - Prob. 48QRTCh. 16 - Prob. 49QRTCh. 16 - Prob. 50QRTCh. 16 - Prob. 51QRTCh. 16 - The reaction of magnesium with water can be used...Ch. 16 - Prob. 53QRTCh. 16 - Prob. 54QRTCh. 16 - Prob. 55QRTCh. 16 - Prob. 56QRTCh. 16 - Prob. 57QRTCh. 16 - Prob. 58QRTCh. 16 - Prob. 59QRTCh. 16 - Prob. 60QRTCh. 16 - Prob. 61QRTCh. 16 - Estimate ΔrG° at 2000. K for each reaction in...Ch. 16 - Prob. 63QRTCh. 16 - Some metal oxides, such as lead(II) oxide, can be...Ch. 16 - Prob. 65QRTCh. 16 - Prob. 66QRTCh. 16 - Use data from Appendix J to obtain the equilibrium...Ch. 16 - Prob. 68QRTCh. 16 - Prob. 69QRTCh. 16 - Use the data in Appendix J to calculate rG andKPat...Ch. 16 - Prob. 71QRTCh. 16 - Prob. 72QRTCh. 16 - Prob. 73QRTCh. 16 - Prob. 74QRTCh. 16 - Prob. 75QRTCh. 16 - Prob. 76QRTCh. 16 - Prob. 77QRTCh. 16 - Prob. 78QRTCh. 16 - Prob. 79QRTCh. 16 - The molecular structure shown is of one form of...Ch. 16 - Another step in the metabolism of glucose, which...Ch. 16 - In muscle cells under the condition of vigorous...Ch. 16 - The biological oxidation of ethanol, C2H5OH, is...Ch. 16 - Prob. 86QRTCh. 16 - For one day, keep a log of all the activities you...Ch. 16 - Billions of pounds of acetic acid are made each...Ch. 16 - Determine the standard Gibbs free energy change,...Ch. 16 - There are millions of organic compounds known, and...Ch. 16 - Actually, the carbon in CO2(g) is...Ch. 16 - The standard molar entropy of methanol vapor,...Ch. 16 - The standard molar entropy of iodine vapor, I2(g),...Ch. 16 - Prob. 94QRTCh. 16 - Prob. 96QRTCh. 16 - Prob. 97QRTCh. 16 - Prob. 98QRTCh. 16 - Prob. 99QRTCh. 16 - Prob. 100QRTCh. 16 - Appendix J lists standard molar entropies S, not...Ch. 16 - When calculating rSfromSvalues, it is necessary to...Ch. 16 - Prob. 103QRTCh. 16 - Explain how the entropy of the universe increases...Ch. 16 - Prob. 105QRTCh. 16 - Prob. 106QRTCh. 16 - Prob. 107QRTCh. 16 - Prob. 108QRTCh. 16 - Prob. 109QRTCh. 16 - Reword the statement in Question 109 so that it is...Ch. 16 - Prob. 111QRTCh. 16 - Prob. 112QRTCh. 16 - Prob. 113QRTCh. 16 - Prob. 114QRTCh. 16 - Prob. 115QRTCh. 16 - Prob. 116QRTCh. 16 - From data in Appendix J, estimate (a) the boiling...Ch. 16 - Prob. 118QRTCh. 16 - Prob. 119QRTCh. 16 - Prob. 120QRTCh. 16 - Prob. 121QRTCh. 16 - Prob. 122QRTCh. 16 - Prob. 123QRTCh. 16 - Prob. 124QRTCh. 16 - Prob. 125QRTCh. 16 - Prob. 126QRTCh. 16 - The standard equilibrium constant is 2.1109for...Ch. 16 - Prob. 16.ACPCh. 16 - Prob. 16.CCPCh. 16 - Prob. 16.DCPCh. 16 - Consider planet Earth as a thermodynamic system....
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY