OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
5th Edition
ISBN: 9781285460420
Author: John W. Moore; Conrad L. Stanitski
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16, Problem 103QRT
Interpretation Introduction
Interpretation:
Whether the oxidation of metals exothermic or endothermic has to be stated. Whether the oxidation of metals product favored or reactant favored has to be stated.
Concept Introduction:
The Gibbs free energy of a system is defined as the enthalpy of the system minus the product of the temperature times the entropy of the system. The Gibbs free energy of the system is a state function as it is defined in terms of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
23.
Given that the enthalpy of neutralization for the reaction of HCl (a strong acid) and NaOH (a strong base) is always -55.90 kJ per mole of H2O formed, what is the concentration of a 55 mL sample of HCl if the enthalpy of neutralization for the reaction was found to be -4.85 kJ, ΔTsoln = 4.5 ºC and the calorimeter constant value is 0.17 kJ/ºC
2.34 M
0.73 M
4.15 M
1.33 M
1.52 M
20
For a reaction with ΔHo = 40 kJ/mol, decide which of the following statements is (are) true. Correct any false statement to make it true.
(a) The reaction is exothermic;
(b) ΔGo for the reaction is positive;
(c) Keq is greater than 1;
(d) the bonds in the starting materials are stronger than the bonds in the product; and
(e) the product is favored at equilibrium.
Chapter 16 Solutions
OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
Ch. 16.1 - Write a chemical equation for each process and...Ch. 16.2 - Prob. 16.2CECh. 16.3 - A chemical reaction transfers 30.8 kJ to a thermal...Ch. 16.3 - Prob. 16.3CECh. 16.3 - Prob. 16.2PSPCh. 16.3 - For each process, predict whether entropy...Ch. 16.4 - Calculate the entropy change for each of these...Ch. 16.5 - The reaction of carbon monoxide with hydrogen to...Ch. 16.5 - Prob. 16.4PSPCh. 16.5 - Prob. 16.6CE
Ch. 16.5 - Prob. 16.8ECh. 16.6 - Prob. 16.9CECh. 16.6 - In the text we concluded that the reaction to...Ch. 16.6 - Prob. 16.10CECh. 16.6 - Prob. 16.6PSPCh. 16.7 - Prob. 16.7PSPCh. 16.7 - Prob. 16.8PSPCh. 16.7 - Prob. 16.9PSPCh. 16.8 - Predict whether each reaction is reactant-favored...Ch. 16.9 - Prob. 16.13ECh. 16.9 - Prob. 16.11PSPCh. 16.9 - Prob. 16.12PSPCh. 16.9 - Prob. 16.14ECh. 16.11 - All of these substances are stable with respect to...Ch. 16 - Define the terms product-favored System and...Ch. 16 - What are the two ways that a final chemical state...Ch. 16 - Define the term entropy, and give an example of a...Ch. 16 - Prob. 4QRTCh. 16 - Prob. 5QRTCh. 16 - Prob. 6QRTCh. 16 - Prob. 7QRTCh. 16 - Prob. 8QRTCh. 16 - Prob. 9QRTCh. 16 - Prob. 10QRTCh. 16 - Prob. 11QRTCh. 16 - Prob. 12QRTCh. 16 - Prob. 13QRTCh. 16 - Prob. 14QRTCh. 16 - Prob. 15QRTCh. 16 - Prob. 16QRTCh. 16 - Prob. 17QRTCh. 16 - Suppose you have four identical molecules labeled...Ch. 16 - For each process, tell whether the entropy change...Ch. 16 - Prob. 20QRTCh. 16 - For each situation described in Question 13,...Ch. 16 - Prob. 22QRTCh. 16 - Prob. 23QRTCh. 16 - Prob. 24QRTCh. 16 - Prob. 25QRTCh. 16 - Prob. 26QRTCh. 16 - Prob. 27QRTCh. 16 - Prob. 28QRTCh. 16 - Prob. 29QRTCh. 16 - Prob. 30QRTCh. 16 - Prob. 31QRTCh. 16 - Diethyl ether, (C2H5)2O, was once used as an...Ch. 16 - Calculate rS for each substance when the quantity...Ch. 16 - Prob. 34QRTCh. 16 - Prob. 35QRTCh. 16 - Check your predictions in Question 28 by...Ch. 16 - Prob. 37QRTCh. 16 - Prob. 38QRTCh. 16 - Prob. 39QRTCh. 16 - Prob. 40QRTCh. 16 - Prob. 41QRTCh. 16 - Prob. 42QRTCh. 16 - Prob. 43QRTCh. 16 - Prob. 44QRTCh. 16 - Prob. 45QRTCh. 16 - Prob. 46QRTCh. 16 - Hydrogen bums in air with considerable heat...Ch. 16 - Prob. 48QRTCh. 16 - Prob. 49QRTCh. 16 - Prob. 50QRTCh. 16 - Prob. 51QRTCh. 16 - The reaction of magnesium with water can be used...Ch. 16 - Prob. 53QRTCh. 16 - Prob. 54QRTCh. 16 - Prob. 55QRTCh. 16 - Prob. 56QRTCh. 16 - Prob. 57QRTCh. 16 - Prob. 58QRTCh. 16 - Prob. 59QRTCh. 16 - Prob. 60QRTCh. 16 - Prob. 61QRTCh. 16 - Estimate ΔrG° at 2000. K for each reaction in...Ch. 16 - Prob. 63QRTCh. 16 - Some metal oxides, such as lead(II) oxide, can be...Ch. 16 - Prob. 65QRTCh. 16 - Prob. 66QRTCh. 16 - Use data from Appendix J to obtain the equilibrium...Ch. 16 - Prob. 68QRTCh. 16 - Prob. 69QRTCh. 16 - Use the data in Appendix J to calculate rG andKPat...Ch. 16 - Prob. 71QRTCh. 16 - Prob. 72QRTCh. 16 - Prob. 73QRTCh. 16 - Prob. 74QRTCh. 16 - Prob. 75QRTCh. 16 - Prob. 76QRTCh. 16 - Prob. 77QRTCh. 16 - Prob. 78QRTCh. 16 - Prob. 79QRTCh. 16 - The molecular structure shown is of one form of...Ch. 16 - Another step in the metabolism of glucose, which...Ch. 16 - In muscle cells under the condition of vigorous...Ch. 16 - The biological oxidation of ethanol, C2H5OH, is...Ch. 16 - Prob. 86QRTCh. 16 - For one day, keep a log of all the activities you...Ch. 16 - Billions of pounds of acetic acid are made each...Ch. 16 - Determine the standard Gibbs free energy change,...Ch. 16 - There are millions of organic compounds known, and...Ch. 16 - Actually, the carbon in CO2(g) is...Ch. 16 - The standard molar entropy of methanol vapor,...Ch. 16 - The standard molar entropy of iodine vapor, I2(g),...Ch. 16 - Prob. 94QRTCh. 16 - Prob. 96QRTCh. 16 - Prob. 97QRTCh. 16 - Prob. 98QRTCh. 16 - Prob. 99QRTCh. 16 - Prob. 100QRTCh. 16 - Appendix J lists standard molar entropies S, not...Ch. 16 - When calculating rSfromSvalues, it is necessary to...Ch. 16 - Prob. 103QRTCh. 16 - Explain how the entropy of the universe increases...Ch. 16 - Prob. 105QRTCh. 16 - Prob. 106QRTCh. 16 - Prob. 107QRTCh. 16 - Prob. 108QRTCh. 16 - Prob. 109QRTCh. 16 - Reword the statement in Question 109 so that it is...Ch. 16 - Prob. 111QRTCh. 16 - Prob. 112QRTCh. 16 - Prob. 113QRTCh. 16 - Prob. 114QRTCh. 16 - Prob. 115QRTCh. 16 - Prob. 116QRTCh. 16 - From data in Appendix J, estimate (a) the boiling...Ch. 16 - Prob. 118QRTCh. 16 - Prob. 119QRTCh. 16 - Prob. 120QRTCh. 16 - Prob. 121QRTCh. 16 - Prob. 122QRTCh. 16 - Prob. 123QRTCh. 16 - Prob. 124QRTCh. 16 - Prob. 125QRTCh. 16 - Prob. 126QRTCh. 16 - The standard equilibrium constant is 2.1109for...Ch. 16 - Prob. 16.ACPCh. 16 - Prob. 16.CCPCh. 16 - Prob. 16.DCPCh. 16 - Consider planet Earth as a thermodynamic system....
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Use the appropriate tables to calculate H for (a) the reaction between copper(II) oxide and carbon monoxide to give copper metal and carbon dioxide. (b) the decomposition of one mole of methyl alcohol (CH3OH) to methane and oxygen gases.arrow_forwardComparing the chemistry of carbon and silicon. (a) Write balanced chemical equations for the reactions of H2O() with CH4 (forming CO2 and H2) and SiH4 (forming SiO2 and H2). (b) Using thermodynamic data, calculate the standard free energy change for the reactions in (a). Is either reaction product-favored at equilibrium? (c) Look up the electronegativities of carbon, silicon, and hydrogen. What conclusion can you draw concerning the polarity of CH and SiH bonds? (d) Carbon and silicon compounds with the formulas (CH3)2CO (acetone) and [(CH3)2SiO]n (a silicone polymer) also have quite different structures. Draw Lewis structures for these species. This difference, along with the difference between structures of CO2 and SiO2, suggests a general observation about silicon compounds. Based on that observation, do you expect that a silicon compound with a structure similar to ethene (C2H4) exists?arrow_forwardThree reactions very important to the semiconductor industry are The reduction of silicon dioxide to crude silicon, SiO2(s) + 2 C(s) → Si(s) + 2 CO(g) ΔrH° = 689.9 kJ/mol The formation of silicon tetrachloride from crude silicon, Si(s) + 2 Cl2(g) → SiCl4(g) ΔrH° = −657.01 kJ/mol The reduction of silicon tetrachloride to pure silicon with magnesium, SiCl4(g) + 2 Mg(s) → 2 MgCl2(s) + Si(s) ΔrH° = −625.6 kJ/mol Calculate the overall enthalpy change when 1.00 mol sand, SiO2, changes into very pure silicon by this series of reactions.arrow_forward
- Calculate the standard enthalpy of reaction for the reaction 2Na + 2H2O——> 2NaOH+ H2. Standard enthalpies of formation are -285.8 kJ/mol for H2O and -470.11 kJ/mol for NaOH.arrow_forward22. Given that the enthalpy of neutralization for the reaction of HCl (a strong acid) and NaOH (a strong base) is always -55.90 kJ per mole of H2O formed, what is the concentration of a 65 mL sample of HCl if the enthalpy of neutralization for the reaction was found to be -5.38 kJ, assuming no heat is lost to the calorimeter? 0.96 M 1.48 M 1.60 M 0.38 M 4.63 Marrow_forwardWith the information provided below, calculate the enthalpy of reduction, AredHº, for the reaction: Sr2*(aq) → Sr(s), and comment on the sign of the obtained magnitude given the properties of the alkaline-earth elements (i.e.: metallic character, reduction potentials, etc.). (hint: Hess' law should come in handy) Show your work AatH® (kJ/mol) AnyaH® (kJ/mol) IE: (kJ/mol) IE2 (kJ/mol) Element Sr 164 -1456 549.5 1064 AatHº: enthalpy of atomization; AnyaH®: enthalpy of hydration; IE1: first ionization energy; IE2: second ionization energy 2.arrow_forward
- What is the enthalpy of the reaction, ΔH, for the formation of CO (g) from O2(g), oxygen, and C(s), graphite? Use the following data: O2(g) + C(s) → CO2ΔH = -393.5 kJ O2(g) +2CO (g) → 2CO2(g) ΔH = -566.0kJarrow_forwardHow much energy is required to produce 1.00 kg of aluminum by the reaction 2 Al2O3(s) + 3 C(s) + 1.97 × 103 kJ → 4 Al(s) + 3 CO2(g)?arrow_forwardUse the information in the ALEKS Data tab to sort the following chemical species by oxidizing power. species 2+ Zn (ag) 3- Al (ag) 2- Mg (aq) Br, (1) oxidizing power choose one ✓ choose one v choose one ✓ choose one ♥arrow_forward
- Decide whether each of the following reactions is product or reactant-favored. Then, calculate the standard enthalpy change of the reaction in each case and draw an energy level diagram to represent it. a) The decomposition of ozone, O3, to oxygen molecules b) the decomposition of MgCO3 (s) to give MgO(s) and CO2(g)arrow_forwardTo a test tube containing 5.0 ml of 1.00 M NaOH at 27°C in a calorimeter, 5.0 ml of 2.00 M HNO3 at the same temperature was added, the heat generated by the reaction was monitored. Which of the following is TRUE? a.Reaction is exothermic; solution will turn pink upon addition of phenolphthalein. b.Heat is absorbed by the system; no color change will be observed upon addition of phenolphthalein. c.Heat is released by the system; no color change will be observed upon addition of phenolphthalein. d.Reaction is endothermic; solution will turn pink upon addition of phenolphthalein.arrow_forwardOne day in lab, while adding a gnarled root to a dark liquid bubbling in an iron cauldron, your friend Carmen (an expert chemist) says this: "Metal sulfides roasted with oxygen produce the corresponding oxide and sulfur dioxide gas." Using Carmen's statement, and what you already know about chemistry, predict the products of the following reaction. Be sure your chemical equation is balanced! olo Ag,s (s) → [ + 0,(8) 2 Ar NO O+0 REACTIONarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY