(a)
Interpretation:
The reaction for the given process has to be classified as product favored or reactant favored.
Concept Introduction:
If a particular reaction is spontaneous then the reaction will proceed in the forward direction, this leads to a reaction which is product favored. And if a reaction is non spontaneous then the reaction will not proceed in the forward direction rather proceeds in backward direction, this lead to a reaction which is reactant favored.
(b)
Interpretation:
The reaction for the given process has to be classified as product favored or reactant favored.
Concept Introduction:
Refer to part (a).
(c)
Interpretation:
The reaction for the given process has to be classified as product favored or reactant favored.
Concept Introduction:
Refer to part (a).
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
- Write a chemical equation for each process and classify each as reactant-favored or product-favored. (a) A puddle of water evaporates on a summer day. (b) Silicon dioxide (sand) decomposes to the elements Silicon and oxygen. (c) Paper, which is mainly cellulose (C6H10O5)n, bums at a temperature of 451 F. (d) A pinch of sugar dissolves in water at room temperature.arrow_forwardActually, the carbon in CO2(g) is thermodynamically unstable with respect to the carbon in calcium carbonate(limestone). Verify this by determining the standardGibbs free energy change for the reaction of lime,CaO(s), with CO2(g) to make CaCO3(s).arrow_forwardWhen 7.11 g NH4NO3 is added to 100 mL water, the temperature of the calorimeter contents decreases from 22.1 C to 17.1 C. Assuming that the mixture has the same specific heat as water and a mass of 107 g, calculate the heat q. Is the dissolution of ammonium nitrate exothermic or endothermic?arrow_forward
- There are millions of organic compounds known, and new ones are being discovered or made at a rate of morethan 100,000 compounds per year. Organic compoundsburn readily in air at high temperatures to form carbondioxide and water. Several classes of organic compoundsare listed, with a simple example of each. Write a balanced chemical equation for the combustion in O2ofeach of these compounds, and then use the data inAppendix J to show that each reaction is product-favoredat room temperature. From these results, it is reasonable to hypothesize thatallorganic compounds are thermodynamically unstable inan oxygen atmosphere (that is, their room-temperaturereaction with O2(g) to form CO2(g) and H2O() isproduct-favored). If this hypothesis is true, how canorganic compounds exist on Earth?arrow_forwardIn the late eighteenth century Priestley prepared ammonia by reacting HNO3(g) with hydrogen gas. The thermodynamic equation for the reaction is HNO3(g)+4H2(g)NH3(g)+3H2O(g)H=637kJ (a) Calculate H when one mole of hydrogen gas reacts. (b) What is H when 10.00 g of NH3(g) are made to react with an excess of steam to form HN3(g) and H2 gases?arrow_forwardThe formation of aluminum oxide from its elements is highly exothermic. If 2.70 g Al metal is burned in pure O2 to give A12O3, calculate how much thermal energy is evolved in the process (at constant pressure).arrow_forward
- Another step in the metabolism of glucose, which occurs after the formation of glucose6-phosphate, is the conversion of fructose6-phosphate to fructose1,6-bisphosphate(bis meanstwo): Fructose6-phosphate(aq) + H2PO4(aq) fructose l,6-bisphosphate(aq) + H2O() + H+(aq) (a) This reaction has a Gibbs free energy change of +16.7 kJ/mol of fructose6-phosphate. Is it endergonic or exergonic? (b) Write the equation for the formation of 1 mol ADP fromATR for which rG = 30.5 kJ/mol. (c) Couple these two reactions to get an exergonic process;write its overall chemical equation, and calculate theGibbs free energy change.arrow_forwardThe combustion of methane can be represented as follows: a. Use the information given above to determine the value of H for the combustion of methane to form CO2(g) and 2H2O(l). b. What is Hf for an element in its standard state? Why is this? Use the figure above to support your answer. c. How does H for the reaction CO2(g) + 2H2O (1) CH4(g) + O2(g) compare to that of the combustion of methane? Why is this?arrow_forward9.96 Most first aid "cold packs" are based on the endothermic dissolution of ammonium nitrate in water: NH4NO3(s)NH4+(aq)+NO3(aq) H= 25.69 kJ A particular cold pack contains 50.0 g of NH4NO3 and 125.0 g of water. When the pack is squeezed, the NH4NO3dissolves in the water. If the pack and its contents are initially at 24.0°C, what is the lowest temperature that this bag could reach? (Assume that the ammonium nitrate solution has a specific heat of 4.25J g-l K-l, and that the heat capacity of the bag itself is small enough to be neglected.)arrow_forward
- Consider the Haber process: N2(g)+3H2(g)2NH3(g);H=91.8kJ The density of ammonia at 25C and 1.00 atm is 0.696 g/L. The density of nitrogen, N2, is 1.145 g/L, and the molar heat capacity is 29.12 J/(mol C). (a) How much heat is evolved in the production of 1.00 L of ammonia at 25C and 1.00 atm? (b) What percentage of this heat is required to heat the nitrogen required for this reaction (0.500 L) from 25C to 400C, the temperature at which the Haber process is run?arrow_forward9.83 A student performing a calorimetry experiment combined 100.0 mL of 0.50 M HCl and 100.0 mL of 0.50 M NaOH in a coffee cup calorimeter. Both solutions were initially at 20.0°C, but when the two were mixed, the temperature rose to 23.2°C. (a) Suppose the experiment is repeated in the same calorimeter but this time using 200 mL of 0.50 M HCl and 200.0 mL of 0.50 M NaOH. Will the T observed he greater than, less than, or equal to that in the first experiment, and why? (b) Suppose that the experiment is repeated once again in the same calorimeter, this time using 100 mL of 1.00 M HCl and 100.0 mL of 1.00 M NaOH. Will the T observed he greater than, less than, or equal to that in the first experiment, and why?arrow_forwardSilver carbonate, Ag2CO3, is a light yellow compound that decomposes when heated to give silver oxide and carbon dioxide: Ag2CO3(s)Ag2O(s)+CO2(g) A researcher measured the partial pressure of carbon dioxide over a sample of silver carbonate at 220C and found that it was 1.37 atm. Calculate the partial pressure of carbon dioxide at 25C. The standard enthalpies of formation of silver carbonate and silver oxide at 25C are 505.9 kJ/mol and 31.05 kJ/mol, respectively. Make any reasonable assumptions in your calculations. State the assumptions that you make, and note why you think they are reasonable.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning