Find vo(t), for all t > 0, in the circuit of Fig. 16.53.
Figure 16.53
Find the expression of voltage
Answer to Problem 30P
The expression of voltage
Explanation of Solution
Given data:
Refer to Figure 16.53 in the textbook.
Formula used:
Write an expression to calculate the value of step input.
Write a general expression to calculate the impedance of a resistor in s-domain.
Here,
Write a general expression to calculate the impedance of an inductor in s-domain.
Here,
Write a general expression to calculate the impedance of a capacitor in s-domain.
Here,
Calculation:
The given circuit is redrawn as shown in Figure 1.
For a DC circuit, at steady state condition at time
For time
The current source
The voltage source
When the value of current source is zero, it is open circuited and when the value of voltage source is zero it is short circuited.
Now, the Figure 1 is reduced as shown in Figure 2.
Refer to Figure 2, there is no current and voltage source placed in the circuit. Therefore, the value of current through the inductor and capacitor is equal to zero.
The current through inductor and voltage across capacitor is always continuous so that,
For time
Apply Laplace transform for
Apply Laplace transform for
Use equation (1) to find
Use equation (1) to find
Substitute
Substitute
Convert the Figure 1 into s-domain as shown in Figure 3.
Apply nodal analysis at node
Apply nodal analysis at node
Simplify the above equation to find
Substitute
Simplify the above equation as follows:
Simplify the above equation to find
From equation (5), the characteristic equation of denominator is written as follows:
Write a general expression to calculate the roots of quadratic equation
Comparing the equation (6) with the equation
Substitute
Simplify the above equation to find
Substitute the roots of characteristic equation in equation (5) to find
Take partial fraction for above equation.
The equation (8) can also be written as follows:
Simplify the above equation as follows:
Substitute
Simplify the above equation to find
Substitute
Simplify the above equation to find
Substitute
Simplify the above equation to find
Substitute
Take inverse Laplace transform for above equation to find
Simplify the above equation to find
Conclusion:
Thus, the expression of voltage
Want to see more full solutions like this?
Chapter 16 Solutions
Fundamentals of Electric Circuits
- I need help with this problem and an explanation of the solution for the image described below. (Introduction to Signals and Systems)arrow_forwardTutorial - Design of Common-Gate (CG) Amplifier Design a common-gate NMOS amplifier with the following parameters: Supply Voltage (VDD): 10 V ⚫Threshold Voltage (Vth): 2 V •Overdrive Voltage (Vov) = VGS-Vth: 1 V • Desired Voltage Gain Av: 10 V/V • Transconductance gm: to be determined •Ensure that the NMOS operates in the saturation region. ⚫ Design Vos to ensure saturation and enough voltage swing. C₁ Vin +VDD RD C₂ V out Rs WI RLarrow_forwardNEED HANDWRITTEN SOLUTION DO NOT USE CHATGPT OR AIarrow_forward
- Determine the response y(n), n≥0 of the system described by the second order difference equation: y(n)-4y(n-1)+4y(n-2)=x(n)-x(n-1) when the input is x(n)=(−1)" u(n) and the initial conditions are y(-1)=y(-2)=0.arrow_forwardConsider a Continuous- time LTI System described by y' (+)+ nycH) = x() find yet for a) x(+)o ē+4(H) b) X(+) = u(+). c) X(H= 5(+)arrow_forwardFind the Thevenin equivalent representation of the circuit given to the left of the nodes a and b. Find Vth and Rth and draw the equivalent Thevenin circuit. For Rth use a 1 volt test source as your method.arrow_forward
- Answer the question by using by Hand plz don't use Aiarrow_forwardCONTROL SYSTEMS The system shown below has been tested with three different reference inputs 6u(t), 6tu(t), and 6tu(t). By using steady-state error calculation, identify which could give zero (0) steady state error. The function u(t) is the unit step. R(s) + E(s) 100(s+2)(s+6) s(s+3)(s+4) C(s)arrow_forwardEXAMPLE 3.8 Classify the following signals as energy signals or power signals or neither: a) f₁ (t) = e−t for t≥0 and f₁(t)=0 for t<0, b) f₂(t) = cos(t), and c) f³(t) = e¯†.arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,