College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 26MCQ
Suppose you pluck a string on a guitar and it produces the note A at a frequency of 440 Hz. Now you press your finger down on the string against one of the frets, making this point the new end of the string. The newly shortened string has 4/5 the length of the full string. When you pluck the string, its frequency will be
A. 350Hz
B. 440Hz
C. 490Hz
D. 550Hz
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 16 - Light can pass easily through water and through...Ch. 16 - Ocean waves are partially reflected from the...Ch. 16 - A string has an abrupt change in linear density at...Ch. 16 - A guitarist finds that the pitch of one of her...Ch. 16 - Certain illnesses inflame your vocal cords,...Ch. 16 - Figure Q16.6 shows a standing wave on a string...Ch. 16 - Figure Q16.7 shows a standing sound wave in a tube...Ch. 16 - A typical flute is about 66 cm long. A piccolo is...Ch. 16 - Some pipes on a pipe organ are open at both ends,...Ch. 16 - A friends voice sounds different over the...
Ch. 16 - Suppose you were to play a trumpet after breathing...Ch. 16 - If you pour liquid in a tall, narrow glass, you...Ch. 16 - When you speak after breathing helium, in which...Ch. 16 - Sopranos can sing notes at very high...Ch. 16 - A synthesizer is a keyboard instrument that can be...Ch. 16 - If a cold gives you a stuffed-up nose, it changes...Ch. 16 - A small boy and a grown woman both speak at...Ch. 16 - At x = 3 cm, what is the earliest time that y will...Ch. 16 - Two sinusoidal waves with the same amplitude A and...Ch. 16 - A student in her physics lab measures the...Ch. 16 - Prob. 23MCQCh. 16 - Resonances of the ear canal lead to increased...Ch. 16 - The frequency of the lowest standing-wave mode on...Ch. 16 - Suppose you pluck a string on a guitar and it...Ch. 16 - Figure P16.11 is a snapshot graph at t = 0 s of...Ch. 16 - Figure P16.2 is a snapshot graph at t = 0 s of two...Ch. 16 - Figure P16.3a is a snapshot graph at t = 0 s of...Ch. 16 - Figure P16.4 is a snapshot graph at t = 0 s of two...Ch. 16 - Figure P16.4 is a snapshot graph at t = 0 s of two...Ch. 16 - Figure P16.6 is a snapshot graph at t = 0 s of a...Ch. 16 - At t = 0 s, a small upward (positive y) pulse...Ch. 16 - You are holding one end of an elastic cord that is...Ch. 16 - A 2.0-m-long string is fixed at both ends and...Ch. 16 - Figure P16.10 shows a standing wave oscillating at...Ch. 16 - A bass guitar string is 89 cm long with a...Ch. 16 - Prob. 12PCh. 16 - a. What are the three longest wavelengths for...Ch. 16 - A 121-cm-long, 4.00 g string oscillates in its m =...Ch. 16 - Prob. 15PCh. 16 - A violin string has a standard length of 32.8 cm....Ch. 16 - The lowest note on a grand piano has a frequency...Ch. 16 - An experimenter finds that standing waves on a...Ch. 16 - Ocean waves of wavelength 26 m are moving directly...Ch. 16 - Prob. 20PCh. 16 - The contrabassoon is the wind instrument capable...Ch. 16 - Figure P16.22 shows a standing sound wave in an...Ch. 16 - Prob. 23PCh. 16 - An organ pipe is made to play a low note at 27.5...Ch. 16 - The speed of sound in room temperature (20C) air...Ch. 16 - Parasaurolophus was a dinosaur whose...Ch. 16 - A drainage pipe running under a freeway is 30.0 m...Ch. 16 - Some pipe organs create sounds lower than humans...Ch. 16 - Although the vocal tract is quite complicated, we...Ch. 16 - You know that you sound better when you sing in...Ch. 16 - A child has an ear canal that is 1.3 cm long. At...Ch. 16 - When a sound wave travels directly toward a hard...Ch. 16 - The first formant of your vocal system can be...Ch. 16 - When you voice the vowel sound in hat, you narrow...Ch. 16 - The first and second formants when you make an ee...Ch. 16 - Two loudspeakers in a 20C room emit 686 Hz sound...Ch. 16 - Two loudspeakers emit sound waves along the...Ch. 16 - In noisy factory environments, its possible to use...Ch. 16 - Two identical loudspeakers separated by distance d...Ch. 16 - Two identical loudspeakers 2.0 m apart are...Ch. 16 - Prob. 42PCh. 16 - Musicians can use beats to tune their instruments....Ch. 16 - A student waiting at a stoplight notices that her...Ch. 16 - Two strings are adjusted to vibrate at exactly 200...Ch. 16 - A childs train whistle replicates a classic...Ch. 16 - A flute player hears four beats per second when...Ch. 16 - Prob. 48GPCh. 16 - In addition to producing images, ultrasound can be...Ch. 16 - An 80-cm-long steel string with a linear density...Ch. 16 - Tendons are, essentially, elastic cords stretched...Ch. 16 - A string, stretched between two fixed posts, forms...Ch. 16 - Spiders may tune strands of their webs to give...Ch. 16 - Prob. 54GPCh. 16 - Prob. 55GPCh. 16 - Lake Erie is prone to remarkable seichesstanding...Ch. 16 - Prob. 57GPCh. 16 - Prob. 58GPCh. 16 - A 40-cm-long tube has a 40-cm-long insert that can...Ch. 16 - The width of a particular microwave oven is...Ch. 16 - Two loudspeakers located along the x-axis as shown...Ch. 16 - Two loudspeakers 42.0 m apart and facing each...Ch. 16 - You are standing 2.50 m directly in front of one...Ch. 16 - Two loudspeakers, 4.0 m apart and facing each...Ch. 16 - Piano tuners tune pianos by listening to the beats...Ch. 16 - A flutist assembles her flute in a room where the...Ch. 16 - A Doppler blood flowmeter emits ultrasound at a...Ch. 16 - An ultrasound unit is being used to measure a...Ch. 16 - Prob. 70MSPPCh. 16 - Prob. 71MSPPCh. 16 - Prob. 72MSPPCh. 16 - Prob. 73MSPP
Additional Science Textbook Solutions
Find more solutions based on key concepts
35. Consider the reaction.
The graph shows the concentration of Br2 as a function of time.
a. Use the g...
Chemistry: Structure and Properties (2nd Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
In cats, tortoiseshell coat color appears in females. A tortoiseshell coat has patches of dark brown fur and pa...
Genetic Analysis: An Integrated Approach (3rd Edition)
Where are skeletal cartilages located?
Human Anatomy & Physiology (2nd Edition)
A source of electromagnetic radiation produces infrared light. Which of the following could be the wavelength ...
Chemistry: The Central Science (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Review. A tuning fork vibrating at 512 Hz falls from rest and accelerates at 9.80 m/s2. How far below the point of release is the tuning fork when waves of frequency 485 Hz reach the release point?arrow_forwardA harmonic transverse wave function is given by y(x, t) = (0.850 m) sin (15.3x + 10.4t) where all values are in the appropriate SI units. a. What are the propagation speed and direction of the waves travel? b. What are the waves period and wavelength? c. What is the amplitude? d. If the amplitude is doubled, what happens to the speed of the wave?arrow_forwardThe tensile stress in a thick copper bar is 99.5% of its elastic breaking point of 13.0 1010 N/m2. If 500-Hz sound wave is transmitted through the material, (a) what displacement amplitude will cause the bar to break? (b) What is the maximum speed of the elements of copper at this moment? (c) What is the sound intensity in the bar?arrow_forward
- A police car is traveling east at 40.0 m/s along a straight road, overtaking a car ahead of it moving east at 30.0 m/s. The police car has a malfunctioning siren that is stuck at 1 000 Hz. (a) What would be the wavelength in air of the siren sound if' the police car were at rest? (b) What is the wavelength in front of the police car? (c) What is it behind the police car? (d) What is the frequency heard by the driver being chased?arrow_forwardA stretched string fixed at each end has a mass of 40.0 g and a length of 8.00 m. The tension in the string is 49.0 N. (a) Determine the positions of the nodes and antinodes for the third harmonic. (b) What is the vibration frequency for this harmonic?arrow_forwardThe 64.0-cm-long string of a guitar has a fundamental frequency of 330 Hz when it vibrates freely along its entire length. A fret is provided for limiting vibration to just the lower two-thirds of the string. (a) If the string is pressed down at this fret and plucked, what is the new fundamental frequency? (b) What If? The guitarist can play a natural harmonic by gently touching the string at the location of this fret and plucking the string at about one-sixth of the way along its length from the other end. What frequency will be heard then?arrow_forward
- The equation of a harmonic wave propagating along a stretched string is represented by y(x, t) = 4.0 sin (1.5x 45t), where x and y are in meters and the time t is in seconds. a. In what direction is the wave propagating? be. N What are the b. amplitude, c. wavelength, d. frequency, and e. propagation speed of the wave?arrow_forwardA standing wave on a string is described by the equation y(x, t) = 1.25 sin(0.0350x) cos(1450t), where x is in centimeters, t is in seconds, and the resulting amplitude is in millimeters. a. What is the length of the string if this standing wave represents the first harmonic vibration of the string? b. What is the speed of the wave on this string?arrow_forwardA sound wave traveling in air has a pressure amplitude of 0.5 Pa. What is the intensity of the wave?arrow_forward
- A steel wire with mass 25.0 g and length 1.35 m is strung on a bass so that the distance from the nut to the bridge is 1.10 m. (a) Compute the linear density of the string. (b) What velocity wave on the string will produce the desired fundamental frequency of the E1 string, 41.2 Hz? (c) Calculate the tension required to obtain the proper frequency. (d) Calculate the wavelength of the strings vibration. (e) What is the wave-length of the sound produced in air? (Assume the speed of sound in air is 343 m/s.)arrow_forward. The frequency of middle C on the piano is 261.6 Hz. (a) What is the wavelength of sound with this frequency as it travels in air at room temperature? (b) What is the wavelength of sound with this frequency in water?arrow_forwardA wave traveling on a Slinky® mat is stretched to 4 m takes 2.4 s to travel the length at me Slinky and back again. (a) What is the speed of the wave? (b) Using the same Slinky stretched to the same length, a standing wave is created which consists of three antinodes and four nodes. At what frequency must the Slinky be oscillating?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY