(a)
Interpretation:The molecule with highest boiling point out of
Concept Introduction:
Solid state has strong intermolecular force of attraction between particles whereas the gaseous particles have weakest intermolecular forces between particles. Due to intermolecular force of attraction between particles, different interconversions are possible between these three states like evaporation, condensation, sublimation, etc. These states have different intermolecular forces between substances. The intermolecular forces exist between different molecules and are mainly 4 types:
- London dispersion force
- Hydrogen bond
- Dipole-dipole bond
- Ion-dipole bond
The order of strength of forces can be shown as:
London dispersion force < dipole-dipole force < Ion-dipole force
(a)

Answer to Problem 18E
Explanation of Solution
The ion-dipole and dipole-dipole exist between dipoles and ions whereas hydrogen bonding exist between two electronegative elements whereas H atom acts as bridge. The London dispersion forces exist between two non-polar molecules and are the weakest forces.
As the intermolecular forces become stronger, the boiling point increases because more energy is required to break the forces between molecules.
All the given molecules are non-polar due to symmetrical geometry and have London dispersion forces. Since the strength of force increases with increase in molar mass therefore
(b)
Interpretation:The molecule with lowest freezing point out of
Concept Introduction:
Solid state has strong intermolecular force of attraction between particles whereas the gaseous particles have weakest intermolecular forces between particles. Due to intermolecular force of attraction between particles, different interconversions are possible between these three states like evaporation, condensation, sublimation, etc. These states have different intermolecular forces between substances. The intermolecular forces exist between different molecules and are mainly 4 types:
- London dispersion force
- Hydrogen bond
- Dipole-dipole bond
- Ion-dipole bond
The order of strength of forces can be shown as:
London dispersion force < dipole-dipole force < Ion-dipole force
(b)

Answer to Problem 18E
Explanation of Solution
The ion-dipole and dipole-dipole exist between dipoles and ions whereas hydrogen bonding exist between two electronegative elements whereas H atom acts as bridge. The London dispersion forces exist between two non-polar molecules and are the weakest forces.
As the intermolecular forces become stronger, the freezing point increases because more energy is required to melt the forces between molecules. In the given molecules,
LiF is ionic compound and HCl has dipole-dipole interactions thus
(c)
Interpretation:The molecule with lowest vapor pressure at 25°C of
Concept Introduction:
Solid state has strong intermolecular force of attraction between particles whereas the gaseous particles have weakest intermolecular forces between particles. Due to intermolecular force of attraction between particles, different interconversions are possible between these three states like evaporation, condensation, sublimation, etc. These states have different intermolecular forces between substances. The intermolecular forces exist between different molecules and are mainly 4 types:
- London dispersion force
- Hydrogen bond
- Dipole-dipole bond
- Ion-dipole bond
The order of strength of forces can be shown as:
London dispersion force < dipole-dipole force < Ion-dipole force
(c)

Answer to Problem 18E
Explanation of Solution
The ion-dipole and dipole-dipole exist between dipoles and ions whereas hydrogen bonding exist between two electronegative elements whereas H atom acts as bridge. The London dispersion forces exist between two non-polar molecules and are the weakest forces.
In the given molecules,
(d)
Interpretation:The molecule with greatestviscosity out of
Concept Introduction:
Solid state has strong intermolecular force of attraction between particles whereas the gaseous particles have weakest intermolecular forces between particles. Due to intermolecular force of attraction between particles, different interconversions are possible between these three states like evaporation, condensation, sublimation, etc. These states have different intermolecular forces between substances. The intermolecular forces exist between different molecules and are mainly 4 types:
- London dispersion force
- Hydrogen bond
- Dipole-dipole bond
- Ion-dipole bond
The order of strength of forces can be shown as:
London dispersion force < dipole-dipole force < Ion-dipole force
(d)

Answer to Problem 18E
Explanation of Solution
The ion-dipole and dipole-dipole exist between dipoles and ions whereas hydrogen bonding exist between two electronegative elements whereas H atom acts as bridge. The London dispersion forces exist between two non-polar molecules and are the weakest forces.
As the intermolecular forces become stronger, the boiling point increases because more energy is required to break the forces between molecules.
As the strength of intermolecular forces increases, the viscosity increases as the molecules come closer to each other. Since HF molecules have strongest hydrogen bond between molecule compare to
(e)
Interpretation:The molecule with greatest heat of vaporization out of
Concept Introduction:
Solid state has strong intermolecular force of attraction between particles whereas the gaseous particles have weakest intermolecular forces between particles. Due to intermolecular force of attraction between particles, different interconversions are possible between these three states like evaporation, condensation, sublimation, etc. These states have different intermolecular forces between substances. The intermolecular forces exist between different molecules and are mainly 4 types:
- London dispersion force
- Hydrogen bond
- Dipole-dipole bond
- Ion-dipole bond
The order of strength of forces can be shown as:
London dispersion force < dipole-dipole force < Ion-dipole force
(e)

Answer to Problem 18E
In the given molecules,
Explanation of Solution
The ion-dipole and dipole-dipole exist between dipoles and ions whereas hydrogen bonding exist between two electronegative elements whereas H atom acts as bridge. The London dispersion forces exist between two non-polar molecules and are the weakest forces.
As the intermolecular forces become stronger, the boiling point increases because more energy is required to break the forces between molecules.
The enthalpy of vaporization also increases with increase in molar mass and strength intermolecular forces. In the given molecules,
(f)
Interpretation:The molecule with smallest enthalpy of fusion out of
Concept Introduction:
Solid state has strong intermolecular force of attraction between particles whereas the gaseous particles have weakest intermolecular forces between particles. Due to intermolecular force of attraction between particles, different interconversions are possible between these three states like evaporation, condensation, sublimation, etc. These states have different intermolecular forces between substances. The intermolecular forces exist between different molecules and are mainly 4 types:
- London dispersion force
- Hydrogen bond
- Dipole-dipole bond
- Ion-dipole bond
The order of strength of forces can be shown as:
London dispersion force < dipole-dipole force < Ion-dipole force
(f)

Answer to Problem 18E
In the given molecules,
Explanation of Solution
The ion-dipole and dipole-dipole exist between dipoles and ions whereas hydrogen bonding exist between two electronegative elements whereas H atom acts as bridge. The London dispersion forces exist between two non-polar molecules and are the weakest forces.
As the intermolecular forces become stronger, the boiling point increases because more energy is required to break the forces between molecules.
The enthalpy of fusion also increases with increase in molar mass and strength intermolecular forces. In the given molecules,
Want to see more full solutions like this?
Chapter 16 Solutions
EBK WEBASSIGN FOR ZUMDAHL'S CHEMICAL PR
- Determine the structures of the missing organic molecules in the following reaction: X+H₂O H* H+ Y OH OH Note: Molecules that share the same letter have the exact same structure. In the drawing area below, draw the skeletal ("line") structures of the missing organic molecules X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Click and drag to start drawing a structure. X Sarrow_forwardPredict the major products of this organic reaction. If there aren't any products, because nothing will happen, check the box under the drawing area instead. No reaction. HO. O :☐ + G Na O.H Click and drag to start drawing a structure. XS xs H₂Oarrow_forwardWhat are the angles a and b in the actual molecule of which this is a Lewis structure? H H C H- a -H b H Note for advanced students: give the ideal angles, and don't worry about small differences from the ideal groups may have slightly different sizes. a = b = 0 °arrow_forward
- What are the angles a and b in the actual molecule of which this is a Lewis structure? :0: HCOH a Note for advanced students: give the ideal angles, and don't worry about small differences from the ideal that might be caused by the fact that different electron groups may have slightly different sizes. a = 0 b=0° Sarrow_forwardDetermine the structures of the missing organic molecules in the following reaction: + H₂O +H OH O OH +H OH X Note: Molecules that share the same letter have the exact same structure. In the drawing area below, draw the skeletal ("line") structure of the missing organic molecule X. Click and drag to start drawing a structure.arrow_forwardIdentify the missing organic reactant in the following reaction: x + x O OH H* + ☑- X H+ O O Х Note: This chemical equation only focuses on the important organic molecules in the reaction. Additional inorganic or small-molecule reactants or products (like H₂O) are not shown. In the drawing area below, draw the skeletal ("line") structure of the missing organic reactant X. Click and drag to start drawing a structure. Carrow_forward
- CH3O OH OH O hemiacetal O acetal O neither O 0 O hemiacetal acetal neither OH hemiacetal O acetal O neither CH2 O-CH2-CH3 CH3-C-OH O hemiacetal O acetal CH3-CH2-CH2-0-c-O-CH2-CH2-CH3 O neither HO-CH2 ? 000 Ar Barrow_forwardWhat would be the best choices for the missing reagents 1 and 3 in this synthesis? 1. PPh3 2 2. n-BuLi 3 Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. • Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Explanation Check Click and drag to start drawing a structure.arrow_forwardPredict the products of this organic reaction: NaBH3CN + NH2 ? H+ Click and drag to start drawing a structure. ×arrow_forward
- Predict the organic products that form in the reaction below: + OH +H H+ ➤ ☑ X - Y Note: You may assume you have an excess of either reactant if the reaction requires more than one of those molecules to form the products. In the drawing area below, draw the skeletal ("line") structures of the missing organic products X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Click and drag to start drawing a structure. Garrow_forwardPredict the organic products that form in the reaction below: OH H+ H+ + ☑ Y Note: You may assume you have an excess of either reactant if the reaction requires more than one of those molecules to form the products. In the drawing area below, draw the skeletal ("line") structures of the missing organic products X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Click and drag to start drawing a structure. ✓ marrow_forwardDetermine the structures of the missing organic molecules in the following reaction: + H₂O +H H+ Y Z ☑ ☑ Note: Molecules that share the same letter have the exact same structure. In the drawing area below, draw the skeletal ("line") structures of the missing organic molecules X, Y, and Z. You may draw the structures in any arrangement that you like, so long as they aren't touching. Molecule X shows up in multiple steps, but you only have to draw its structure once. Click and drag to start drawing a structure. AP +arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





