The mathematical relation between solubility product, K sp and molar solubility, s are given. The example of a salt for each mathematical representation is to be given with reference to Table 15-1 . Concept introduction: At equilibrium, the measure of maximum amount of solute that is to be dissolved in a solvent is known as solubility. Solubility product is defined as the product of concentration of ions in a saturated solution where each ion is raised to the power of their coefficients.
The mathematical relation between solubility product, K sp and molar solubility, s are given. The example of a salt for each mathematical representation is to be given with reference to Table 15-1 . Concept introduction: At equilibrium, the measure of maximum amount of solute that is to be dissolved in a solvent is known as solubility. Solubility product is defined as the product of concentration of ions in a saturated solution where each ion is raised to the power of their coefficients.
Solution Summary: The author explains the mathematical relation between solubility product, K_sp and molar
Interpretation: The mathematical relation between solubility product,
Ksp and molar solubility,
s are given. The example of a salt for each mathematical representation is to be given with reference to Table
15-1.
Concept introduction: At equilibrium, the measure of maximum amount of solute that is to be dissolved in a solvent is known as solubility. Solubility product is defined as the product of concentration of ions in a saturated solution where each ion is raised to the power of their coefficients.
(ii)
Interpretation Introduction
Interpretation: The mathematical relation between solubility product,
Ksp and molar solubility,
s are given. The example of a salt for each mathematical representation is to be given with reference to Table
15-1.
Concept introduction: At equilibrium, the measure of maximum amount of solute that is to be dissolved in a solvent is known as solubility. Solubility product is defined as the product of concentration of ions in a saturated solution where each ion is raised to the power of their coefficients.
(iii)
Interpretation Introduction
Interpretation: The mathematical relation between solubility product,
Ksp and molar solubility,
s are given. The example of a salt for each mathematical representation is to be given with reference to Table
15-1.
Concept introduction: At equilibrium, the measure of maximum amount of solute that is to be dissolved in a solvent is known as solubility. Solubility product is defined as the product of concentration of ions in a saturated solution where each ion is raised to the power of their coefficients.
(iv)
Interpretation Introduction
Interpretation: The mathematical relation between solubility product,
Ksp and molar solubility,
s are given. The example of a salt for each mathematical representation is to be given with reference to Table
15-1.
Concept introduction: At equilibrium, the measure of maximum amount of solute that is to be dissolved in a solvent is known as solubility. Solubility product is defined as the product of concentration of ions in a saturated solution where each ion is raised to the power of their coefficients.
1) The isoamyl acetate report requires eight paragraphs - four for comparison of isoamyl alcohol and isoamyl acetate (one paragraph each devoted to MS, HNMR, CNMR and IR) and four for comparison of acetic acid and isoamyl acetate ((one paragraph each devoted to MS, HNMR, CNMR and IR.
2) For MS, the differing masses of molecular ions are a popular starting point. Including a unique fragmentation is important, too.
3) For HNMR, CNMR and IR state the peaks that are different and what makes them different (usually the presence or absence of certain groups). See if you can find two differences (in each set of IR, HNMR and CNMR spectra) due to the presence or absence of a functional group. Include peak locations. Alternatively, you can state a shift of a peak due to a change near a given functional group. Including peak locations for shifted peaks, as well as what these peaks are due to. Ideally, your focus should be on not just identifying the differences but explaining them in terms of…
What steps might you take to produce the following product from the given starting
material?
CI
Br
Он
до
NH2
NH2
1) The isoamyl acetate report requires eight paragraphs - four for comparison of isoamyl alcohol and isoamyl acetate (one paragraph each devoted to MS, HNMR, CNMR and IR) and four for comparison of acetic acid and isoamyl acetate ((one paragraph each devoted to MS, HNMR, CNMR and IR.
2) For MS, the differing masses of molecular ions are a popular starting point. Including a unique fragmentation is important, too.
3) For HNMR, CNMR and IR state the peaks that are different and what makes them different (usually the presence or absence of certain groups). See if you can find two differences (in each set of IR, HNMR and CNMR spectra) due to the presence or absence of a functional group. Include peak locations. Alternatively, you can state a shift of a peak due to a change near a given functional group. Including peak locations for shifted peaks, as well as what these peaks are due to. Ideally, your focus should be on not just identifying the differences but explaining them in terms of…