Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 15.7, Problem 44P
To determine
The enthalpy of combustion of gaseous ethane using the enthalpy of formation data from Table A–26 and Compare the result to the value listed in Table A–27.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is ∆? for the throttling step in kJ/kg?
Determine the enthalphy of combustion of methane at 25 deg Centigrade and 1 atm, using enthalphy - of - formation data from Table A - 26. Assume the water in the products is in liquid form.
Consider the equilibrium mixture of H₂O vapour, H, and O₂
caused by the dissociation of 1 gmol of H₂O at 1 atm and 1900 K. If AH = 250,
560 J/gmol, & = 3.2 x 10³, estimate C₂ - En Cpk
e
р
k
Chapter 15 Solutions
Thermodynamics: An Engineering Approach
Ch. 15.7 - How does the presence of N2 in air affect the...Ch. 15.7 - Prob. 2PCh. 15.7 - Prob. 3PCh. 15.7 - Is the airfuel ratio expressed on a mole basis...Ch. 15.7 - Prob. 5PCh. 15.7 - Prob. 6PCh. 15.7 - Prob. 7PCh. 15.7 - What does 100 percent theoretical air represent?Ch. 15.7 - Consider a fuel that is burned with (a) 130...Ch. 15.7 - Are complete combustion and theoretical combustion...
Ch. 15.7 - What are the causes of incomplete combustion?Ch. 15.7 - Which is more likely to be found in the products...Ch. 15.7 - Methane (CH4) is burned with the stoichiometric...Ch. 15.7 - Prob. 14PCh. 15.7 - n-Butane fuel (C4H10) is burned with the...Ch. 15.7 - Prob. 16PCh. 15.7 - Prob. 17PCh. 15.7 - 15–18 n-Octane (C8H18) is burned with 50 percent...Ch. 15.7 - In a combustion chamber, ethane (C2H6) is burned...Ch. 15.7 - Prob. 20PCh. 15.7 - Prob. 21PCh. 15.7 - 15–22 One kilogram of butane (C4H10) is burned...Ch. 15.7 - 15–23E One lbm of butane (C4H10) is burned with 25...Ch. 15.7 - Prob. 24PCh. 15.7 - A fuel mixture of 60 percent by mass methane (CH4)...Ch. 15.7 - A certain natural gas has the following volumetric...Ch. 15.7 - Prob. 27PCh. 15.7 - A gaseous fuel with a volumetric analysis of 45...Ch. 15.7 - Prob. 30PCh. 15.7 - 15–31 Octane (C8H18) is burned with dry air. The...Ch. 15.7 - Prob. 32PCh. 15.7 - Prob. 33PCh. 15.7 - Prob. 34PCh. 15.7 - Prob. 35PCh. 15.7 - Prob. 36PCh. 15.7 - Prob. 37PCh. 15.7 - Prob. 38PCh. 15.7 - Prob. 39PCh. 15.7 - Prob. 40PCh. 15.7 - Prob. 41PCh. 15.7 - Prob. 42PCh. 15.7 - Prob. 44PCh. 15.7 - Repeat Prob. 1546 for liquid octane (C8H18).Ch. 15.7 - Ethane (C2H6) is burned at atmospheric pressure...Ch. 15.7 - Reconsider Prob. 1550. What minimum pressure of...Ch. 15.7 - Calculate the HHV and LHV of gaseous n-octane fuel...Ch. 15.7 - Prob. 49PCh. 15.7 - Prob. 50PCh. 15.7 - Consider a complete combustion process during...Ch. 15.7 - Prob. 53PCh. 15.7 - Prob. 54PCh. 15.7 - Propane fuel (C3H8) is burned with an airfuel...Ch. 15.7 - 15–56 Hydrogen (H2) is burned completely with the...Ch. 15.7 - Prob. 57PCh. 15.7 - Prob. 58PCh. 15.7 - Octane gas (C8H18) at 25C is burned steadily with...Ch. 15.7 - Prob. 61PCh. 15.7 - Liquid ethyl alcohol [C2H5OH(l)] at 25C is burned...Ch. 15.7 - Prob. 63PCh. 15.7 - Prob. 64PCh. 15.7 - A constant-volume tank contains a mixture of 120 g...Ch. 15.7 - Prob. 67PCh. 15.7 - Prob. 68PCh. 15.7 - Prob. 69PCh. 15.7 - A fuel is completely burned first with the...Ch. 15.7 - Prob. 71PCh. 15.7 - Acetylene gas (C2H2) at 25C is burned during a...Ch. 15.7 - Octane gas (C8H18) at 25C is burned steadily with...Ch. 15.7 - Express the increase of entropy principle for...Ch. 15.7 - Prob. 81PCh. 15.7 - What does the Gibbs function of formation gf of a...Ch. 15.7 - Liquid octane (C8H18) enters a steady-flow...Ch. 15.7 - Benzene gas (C6H6) at 1 atm and 77F is burned...Ch. 15.7 - Prob. 87PCh. 15.7 - Prob. 88PCh. 15.7 - A steady-flow combustion chamber is supplied with...Ch. 15.7 - Prob. 91RPCh. 15.7 - 15–92 A gaseous fuel with 80 percent CH4, 15...Ch. 15.7 - Prob. 93RPCh. 15.7 - Prob. 94RPCh. 15.7 - Prob. 95RPCh. 15.7 - Prob. 96RPCh. 15.7 - Prob. 97RPCh. 15.7 - Prob. 98RPCh. 15.7 - Prob. 99RPCh. 15.7 - Prob. 100RPCh. 15.7 - A 6-m3 rigid tank initially contains a mixture of...Ch. 15.7 - Prob. 102RPCh. 15.7 - Propane gas (C3H8) enters a steady-flow combustion...Ch. 15.7 - Determine the highest possible temperature that...Ch. 15.7 - Prob. 106RPCh. 15.7 - Prob. 107RPCh. 15.7 - A steam boiler heats liquid water at 200C to...Ch. 15.7 - Repeat Prob. 15112 using a coal from Utah that has...Ch. 15.7 - Liquid octane (C8H18) enters a steady-flow...Ch. 15.7 - Prob. 111RPCh. 15.7 - Prob. 112RPCh. 15.7 - Prob. 113RPCh. 15.7 - Consider the combustion of a mixture of an...Ch. 15.7 - A fuel is burned steadily in a combustion chamber....Ch. 15.7 - A fuel is burned with 70 percent theoretical air....Ch. 15.7 - Prob. 123FEPCh. 15.7 - One kmol of methane (CH4) is burned with an...Ch. 15.7 - An equimolar mixture of carbon dioxide and water...Ch. 15.7 - The higher heating value of a hydrocarbon fuel...Ch. 15.7 - Acetylene gas (C2H2) is burned completely during a...Ch. 15.7 - Prob. 129FEPCh. 15.7 - A fuel is burned during a steady-flow combustion...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Ql:- C4HS is burned in an engine with a fuel-rich air-fuel ratio. Dry analysis of the exhaust gives the following volume percents: COz 14.95%, C4HS 0.75%, CO 0%, Hz 0%, Oz 0%, with the rest being Nz. Higher heating value of this fuel is QHHV = 46.9 MJ/kg. Write the balanced chemical equation for one mole of this fuel at these conditions. Calculate: (a) Air-fuel ratio. (b) Equivalence ratio. (c) Lower heating value of the fuel. [MJ/kg] (d) The energy released when one kg of this fuel is burned in the engine with a combustion efficiency of 98%. [MJ]arrow_forward.arrow_forwardEthanol Fuel C2H6O is burned with atmospheric air in a stoichiometric ratio. The mole fraction of H2O in the products is: Select one: O a. 0.857 O b. 0.1843 O c. 0.5415 O d. 0.6124arrow_forward
- Liquid octane at 25°C and 0,1MPA is burned in 96% theoretical air at 25°C. The exit temperature is 600K. How much energy is emitted to the environment? (4.19x10°kJ/kmol)arrow_forwardOxygen (02) is used as oxidizer to Converet Co ( fuel) completely into c02. The products contain only Co2 and O2. The mole fraction of Oz in products is o.40. The equivalence ratio for this chemical reaction i's. a. 0.23 ; b. 0.33 ; C. 0.43; d. 0·53 ;e.o.63arrow_forwardDerive the expression for equilibrium constant for ideal - gas mixtures?arrow_forward
- Check Your Understanding The combustion of naphthalene (CHs), which re- leases 5150.1 kJ/mol, is often used to calibrate calorimeters. A 1.05-g sample of naph- thalene is burned in a calorimeter, producing a temperature rise of 3.86°C. Burning a 1.83-g sample of coal in the same calorimeter causes a temperature change of 4.90°C. What is the energy density of the coal?arrow_forwardAnswer one of these 2 questionsarrow_forwardFuel and Combination Problem. Please solve ellaborately and include the Units. Your work will be appreciated much Dear.arrow_forward
- 18 A new fuel being de veloped for use in internal combustion engines consists of 2 me thanol and 2 butene-1 by mole. Calculate: (a) Stoichiometric AF [kg,/kgd (b) АКI.arrow_forwardA 0.220 g sample of acetic acid, CH,COOH, is burned in a bomb calorimeter that has a heat capacity of 1.65 kJ/ºC. The temperature of the calorimeter increased by 1.95 °C. Calculate the energy of combustion (in kJ/mol CH,COOH). 1- Select one: 3 а. -1.3x10 2 b. -7.39 x10 C. -8.78x10 3 d. -1.19x10 e. -3.16x10arrow_forwardComplete Combustion of methane with theoretical air (or 100% air) methane, C H, is to be burned with 100% air for complete combustion. The products of combustion or flue gas is at 105 kPa and 950 C Find (a) write the balanced mol equation (b) mass of theoretical air (c) mass of fuel (d) theoretical air-fuel ratio (e) volumetric analysis and molar analysis of wet flue gas (f) mass and volume of wet flue gas (g) gravimetric analysis of wet flue gas (h) dew point of wet flue gas (i) volumetric analysis and molar analysis of dry flue gas (j) mass and volume of dry flue gas (k) gravimetric analysis of dry flue gasarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Extent of Reaction; Author: LearnChemE;https://www.youtube.com/watch?v=__stMf3OLP4;License: Standard Youtube License