Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
bartleby

Videos

Textbook Question
Book Icon
Chapter 15.7, Problem 13P

Methane (CH4) is burned with the stoichiometric amount of air during a combustion process. Assuming complete combustion, determine the air–fuel and fuel–air ratios.

Blurred answer
Students have asked these similar questions
Q Derive (continuity equation)? I want to derive clear mathematics.
motor supplies 200 kW at 6 Hz to flange A of the shaft shown in Figure. Gear B transfers 125 W of power to operating machinery in the factory, and the remaining power in the shaft is mansferred by gear D. Shafts (1) and (2) are solid aluminum (G = 28 GPa) shafts that have the same diameter and an allowable shear stress of t= 40 MPa. Shaft (3) is a solid steel (G = 80 GPa) shaft with an allowable shear stress of t = 55 MPa. Determine: a) the minimum permissible diameter for aluminum shafts (1) and (2) b) the minimum permissible diameter for steel shaft (3). c) the rotation angle of gear D with respect to flange A if the shafts have the minimum permissible diameters as determined in (a) and (b).
First monthly exam Gas dynamics Third stage Q1/Water at 15° C flow through a 300 mm diameter riveted steel pipe, E-3 mm with a head loss of 6 m in 300 m length. Determine the flow rate in pipe. Use moody chart. Q2/ Assume a car's exhaust system can be approximated as 14 ft long and 0.125 ft-diameter cast-iron pipe ( = 0.00085 ft) with the equivalent of (6) regular 90° flanged elbows (KL = 0.3) and a muffler. The muffler acts as a resistor with a loss coefficient of KL= 8.5. Determine the pressure at the beginning of the exhaust system (pl) if the flowrate is 0.10 cfs, and the exhaust has the same properties as air.(p = 1.74 × 10-3 slug/ft³, u= 4.7 x 10-7 lb.s/ft²) Use moody chart (1) MIDAS Kel=0.3 Q3/Liquid ammonia at -20°C is flowing through a 30 m long section of a 5 mm diameter copper tube(e = 1.5 × 10-6 m) at a rate of 0.15 kg/s. Determine the pressure drop and the head losses. .μ= 2.36 × 10-4 kg/m.s)p = 665.1 kg/m³

Chapter 15 Solutions

Thermodynamics: An Engineering Approach

Ch. 15.7 - What are the causes of incomplete combustion?Ch. 15.7 - Which is more likely to be found in the products...Ch. 15.7 - Methane (CH4) is burned with the stoichiometric...Ch. 15.7 - Prob. 14PCh. 15.7 - n-Butane fuel (C4H10) is burned with the...Ch. 15.7 - Prob. 16PCh. 15.7 - Prob. 17PCh. 15.7 - 15–18 n-Octane (C8H18) is burned with 50 percent...Ch. 15.7 - In a combustion chamber, ethane (C2H6) is burned...Ch. 15.7 - Prob. 20PCh. 15.7 - Prob. 21PCh. 15.7 - 15–22 One kilogram of butane (C4H10) is burned...Ch. 15.7 - 15–23E One lbm of butane (C4H10) is burned with 25...Ch. 15.7 - Prob. 24PCh. 15.7 - A fuel mixture of 60 percent by mass methane (CH4)...Ch. 15.7 - A certain natural gas has the following volumetric...Ch. 15.7 - Prob. 27PCh. 15.7 - A gaseous fuel with a volumetric analysis of 45...Ch. 15.7 - Prob. 30PCh. 15.7 - 15–31 Octane (C8H18) is burned with dry air. The...Ch. 15.7 - Prob. 32PCh. 15.7 - Prob. 33PCh. 15.7 - Prob. 34PCh. 15.7 - Prob. 35PCh. 15.7 - Prob. 36PCh. 15.7 - Prob. 37PCh. 15.7 - Prob. 38PCh. 15.7 - Prob. 39PCh. 15.7 - Prob. 40PCh. 15.7 - Prob. 41PCh. 15.7 - Prob. 42PCh. 15.7 - Prob. 44PCh. 15.7 - Repeat Prob. 1546 for liquid octane (C8H18).Ch. 15.7 - Ethane (C2H6) is burned at atmospheric pressure...Ch. 15.7 - Reconsider Prob. 1550. What minimum pressure of...Ch. 15.7 - Calculate the HHV and LHV of gaseous n-octane fuel...Ch. 15.7 - Prob. 49PCh. 15.7 - Prob. 50PCh. 15.7 - Consider a complete combustion process during...Ch. 15.7 - Prob. 53PCh. 15.7 - Prob. 54PCh. 15.7 - Propane fuel (C3H8) is burned with an airfuel...Ch. 15.7 - 15–56 Hydrogen (H2) is burned completely with the...Ch. 15.7 - Prob. 57PCh. 15.7 - Prob. 58PCh. 15.7 - Octane gas (C8H18) at 25C is burned steadily with...Ch. 15.7 - Prob. 61PCh. 15.7 - Liquid ethyl alcohol [C2H5OH(l)] at 25C is burned...Ch. 15.7 - Prob. 63PCh. 15.7 - Prob. 64PCh. 15.7 - A constant-volume tank contains a mixture of 120 g...Ch. 15.7 - Prob. 67PCh. 15.7 - Prob. 68PCh. 15.7 - Prob. 69PCh. 15.7 - A fuel is completely burned first with the...Ch. 15.7 - Prob. 71PCh. 15.7 - Acetylene gas (C2H2) at 25C is burned during a...Ch. 15.7 - Octane gas (C8H18) at 25C is burned steadily with...Ch. 15.7 - Express the increase of entropy principle for...Ch. 15.7 - Prob. 81PCh. 15.7 - What does the Gibbs function of formation gf of a...Ch. 15.7 - Liquid octane (C8H18) enters a steady-flow...Ch. 15.7 - Benzene gas (C6H6) at 1 atm and 77F is burned...Ch. 15.7 - Prob. 87PCh. 15.7 - Prob. 88PCh. 15.7 - A steady-flow combustion chamber is supplied with...Ch. 15.7 - Prob. 91RPCh. 15.7 - 15–92 A gaseous fuel with 80 percent CH4, 15...Ch. 15.7 - Prob. 93RPCh. 15.7 - Prob. 94RPCh. 15.7 - Prob. 95RPCh. 15.7 - Prob. 96RPCh. 15.7 - Prob. 97RPCh. 15.7 - Prob. 98RPCh. 15.7 - Prob. 99RPCh. 15.7 - Prob. 100RPCh. 15.7 - A 6-m3 rigid tank initially contains a mixture of...Ch. 15.7 - Prob. 102RPCh. 15.7 - Propane gas (C3H8) enters a steady-flow combustion...Ch. 15.7 - Determine the highest possible temperature that...Ch. 15.7 - Prob. 106RPCh. 15.7 - Prob. 107RPCh. 15.7 - A steam boiler heats liquid water at 200C to...Ch. 15.7 - Repeat Prob. 15112 using a coal from Utah that has...Ch. 15.7 - Liquid octane (C8H18) enters a steady-flow...Ch. 15.7 - Prob. 111RPCh. 15.7 - Prob. 112RPCh. 15.7 - Prob. 113RPCh. 15.7 - Consider the combustion of a mixture of an...Ch. 15.7 - A fuel is burned steadily in a combustion chamber....Ch. 15.7 - A fuel is burned with 70 percent theoretical air....Ch. 15.7 - Prob. 123FEPCh. 15.7 - One kmol of methane (CH4) is burned with an...Ch. 15.7 - An equimolar mixture of carbon dioxide and water...Ch. 15.7 - The higher heating value of a hydrocarbon fuel...Ch. 15.7 - Acetylene gas (C2H2) is burned completely during a...Ch. 15.7 - Prob. 129FEPCh. 15.7 - A fuel is burned during a steady-flow combustion...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Extent of Reaction; Author: LearnChemE;https://www.youtube.com/watch?v=__stMf3OLP4;License: Standard Youtube License