THERMODYNAMICS(SI UNITS,INTL.ED)EBOOK>I
8th Edition
ISBN: 9781307434316
Author: CENGEL
Publisher: INTER MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15.7, Problem 128FEP
Acetylene gas (C2H2) is burned completely during a steady-flow combustion process. The fuel and the air enter the combustion chamber at 25°C, and the products leave at 1500 K. If the enthalpy of the products relative to the standard reference state is –404 MJ/kmol of fuel, the heat transfer from the combustion chamber is
(a)
177 MJ/kmol
(b)
227 MJ/kmol
(c)
404 MJ/kmol
(d)
631 MJ/kmol
(e)
751 MJ/kmol
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Octane gas (C8H18) and atmospheric air are supplied to a combustion chamber at 25°C at the stoichiometric air/fuel
ratio. The combustion takes place adiabatically under steady-flow condition. The change in velocity and the work transfer
can be assumed negligible. The Enthalpy of Combustion of octane gas at 25°C is – 5,116,180 kJ/kmol (when H2O in the
combustion products is in vapor phase). Determine with aid of the Table on Page 26, the final temperature of the
combustion products.
Q1. Propane (C3H8) gas enters a steady-flow adiabatic combustion chamber at 25°℃ and 1 atm. It is burned with
300 percent excess air that also enters at 25°C and 1 atm. Assuming complete combustion, determine (a) the
temperature of the products, (b) the entropy generation, and (c) the reversible work and exergy destruction. Assume
that To = 298 K and the products leave the combustion chamber at 1 atm pressure.
A gaseous fuel with 80% butane, 15% nitrogen and 5% oxygen (on a mole basis) is burned to completion with 120 percent theoretical air that enters the combustion chamber at 30°C and 100 kPa. Determine the volume flow rate of air required to burn fuel at a rate of 2 kg/min.
Chapter 15 Solutions
THERMODYNAMICS(SI UNITS,INTL.ED)EBOOK>I
Ch. 15.7 - How does the presence of N2 in air affect the...Ch. 15.7 - Prob. 2PCh. 15.7 - Prob. 3PCh. 15.7 - Is the airfuel ratio expressed on a mole basis...Ch. 15.7 - Prob. 5PCh. 15.7 - Prob. 6PCh. 15.7 - Prob. 7PCh. 15.7 - What does 100 percent theoretical air represent?Ch. 15.7 - Consider a fuel that is burned with (a) 130...Ch. 15.7 - Are complete combustion and theoretical combustion...
Ch. 15.7 - What are the causes of incomplete combustion?Ch. 15.7 - Which is more likely to be found in the products...Ch. 15.7 - Methane (CH4) is burned with the stoichiometric...Ch. 15.7 - Prob. 14PCh. 15.7 - n-Butane fuel (C4H10) is burned with the...Ch. 15.7 - Prob. 16PCh. 15.7 - Prob. 17PCh. 15.7 - 15–18 n-Octane (C8H18) is burned with 50 percent...Ch. 15.7 - In a combustion chamber, ethane (C2H6) is burned...Ch. 15.7 - Prob. 20PCh. 15.7 - Prob. 21PCh. 15.7 - 15–22 One kilogram of butane (C4H10) is burned...Ch. 15.7 - 15–23E One lbm of butane (C4H10) is burned with 25...Ch. 15.7 - Prob. 24PCh. 15.7 - A fuel mixture of 60 percent by mass methane (CH4)...Ch. 15.7 - A certain natural gas has the following volumetric...Ch. 15.7 - Prob. 27PCh. 15.7 - A gaseous fuel with a volumetric analysis of 45...Ch. 15.7 - Prob. 30PCh. 15.7 - 15–31 Octane (C8H18) is burned with dry air. The...Ch. 15.7 - Prob. 32PCh. 15.7 - Prob. 33PCh. 15.7 - Prob. 34PCh. 15.7 - Prob. 35PCh. 15.7 - Prob. 36PCh. 15.7 - Prob. 37PCh. 15.7 - Prob. 38PCh. 15.7 - Prob. 39PCh. 15.7 - Prob. 40PCh. 15.7 - Prob. 41PCh. 15.7 - Prob. 42PCh. 15.7 - Prob. 44PCh. 15.7 - Repeat Prob. 1546 for liquid octane (C8H18).Ch. 15.7 - Ethane (C2H6) is burned at atmospheric pressure...Ch. 15.7 - Reconsider Prob. 1550. What minimum pressure of...Ch. 15.7 - Calculate the HHV and LHV of gaseous n-octane fuel...Ch. 15.7 - Prob. 49PCh. 15.7 - Prob. 50PCh. 15.7 - Consider a complete combustion process during...Ch. 15.7 - Prob. 53PCh. 15.7 - Prob. 54PCh. 15.7 - Propane fuel (C3H8) is burned with an airfuel...Ch. 15.7 - 15–56 Hydrogen (H2) is burned completely with the...Ch. 15.7 - Prob. 57PCh. 15.7 - Prob. 58PCh. 15.7 - Octane gas (C8H18) at 25C is burned steadily with...Ch. 15.7 - Prob. 61PCh. 15.7 - Liquid ethyl alcohol [C2H5OH(l)] at 25C is burned...Ch. 15.7 - Prob. 63PCh. 15.7 - Prob. 64PCh. 15.7 - A constant-volume tank contains a mixture of 120 g...Ch. 15.7 - Prob. 67PCh. 15.7 - Prob. 68PCh. 15.7 - Prob. 69PCh. 15.7 - A fuel is completely burned first with the...Ch. 15.7 - Prob. 71PCh. 15.7 - Acetylene gas (C2H2) at 25C is burned during a...Ch. 15.7 - Octane gas (C8H18) at 25C is burned steadily with...Ch. 15.7 - Express the increase of entropy principle for...Ch. 15.7 - Prob. 81PCh. 15.7 - What does the Gibbs function of formation gf of a...Ch. 15.7 - Liquid octane (C8H18) enters a steady-flow...Ch. 15.7 - Benzene gas (C6H6) at 1 atm and 77F is burned...Ch. 15.7 - Prob. 87PCh. 15.7 - Prob. 88PCh. 15.7 - A steady-flow combustion chamber is supplied with...Ch. 15.7 - Prob. 91RPCh. 15.7 - 15–92 A gaseous fuel with 80 percent CH4, 15...Ch. 15.7 - Prob. 93RPCh. 15.7 - Prob. 94RPCh. 15.7 - Prob. 95RPCh. 15.7 - Prob. 96RPCh. 15.7 - Prob. 97RPCh. 15.7 - Prob. 98RPCh. 15.7 - Prob. 99RPCh. 15.7 - Prob. 100RPCh. 15.7 - A 6-m3 rigid tank initially contains a mixture of...Ch. 15.7 - Prob. 102RPCh. 15.7 - Propane gas (C3H8) enters a steady-flow combustion...Ch. 15.7 - Determine the highest possible temperature that...Ch. 15.7 - Prob. 106RPCh. 15.7 - Prob. 107RPCh. 15.7 - A steam boiler heats liquid water at 200C to...Ch. 15.7 - Repeat Prob. 15112 using a coal from Utah that has...Ch. 15.7 - Liquid octane (C8H18) enters a steady-flow...Ch. 15.7 - Prob. 111RPCh. 15.7 - Prob. 112RPCh. 15.7 - Prob. 113RPCh. 15.7 - Consider the combustion of a mixture of an...Ch. 15.7 - A fuel is burned steadily in a combustion chamber....Ch. 15.7 - A fuel is burned with 70 percent theoretical air....Ch. 15.7 - Prob. 123FEPCh. 15.7 - One kmol of methane (CH4) is burned with an...Ch. 15.7 - An equimolar mixture of carbon dioxide and water...Ch. 15.7 - The higher heating value of a hydrocarbon fuel...Ch. 15.7 - Acetylene gas (C2H2) is burned completely during a...Ch. 15.7 - Prob. 129FEPCh. 15.7 - A fuel is burned during a steady-flow combustion...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- n-Octane gas (C8H18) is burned with 80% excess air in a constant pressure burner. The air and fuel enter this burner steadily at standard conditions and the products of combustion leave at 217°C. Calculate the heat transfer, in kJ/kg fuel, during this combustion. C8H18 25°C 80% excess air 25°C Qout Combustion chamber P = 1 atm Products 217°Carrow_forwardAcetylene gas (C2H2) is completely burned with 20 percent excess air in the steady-current combustion process. Fuel and the air enters the combustion chamber at 25 ° C and the products exit at a temperature of 1227 ° C. During this process Calculate the heat transfer that occurs.arrow_forwardinternal combustion enginearrow_forward
- Liquid propane (C3H8) enters a combustion chamber at 25°C at a rate of 0.05 kg/min where it is mixed and burned with 50 percent excess air that enters the combustion chamber at 7°C. An analysis of the combustion gases reveals that all the hydrogen in the fuel burns to H2O but only 90 percent of the carbon burns to CO2, with the remaining 10 percent forming CO. If the exit temperature of the combustion gases is 1500 K, determine 1-The balanced chemical equation for the actual process 2-Air- Fuel ratio 3-The mass flow rate of airarrow_forwardLiquid propane (C 3 H 8 ) enters a combustion chamber at 25 °C at a rate of 0.05 kg/min where it is mixed and burned with theoretical air that enters the combustion chamber at 7 °C. an analysis of combustion gases reveals that all the hydrogen in the fuel burns to H 2 O but only but only 90% of carbon burn to CO 2 with the remaining 10% forming Co if the exit temperature of combustion gases is 1500 K (a) the mass flow rate of air and (b) the rate of heat transfer from the combustion chamberarrow_forwardCalculate the enthalpy of combustion of propane C3H8 at 25 oC in both kJ/kg and kJ/mole under the following conditions:- 1- gaseous propane with H2O liquid in the products. 2- gaseous propane with H2O vapor in the products 3- liquid propane with H2O liquid in the products 4- liquid propane with H2O vapor in the products note: the enthalpy of evaporation of propane at 25 oC is 425 kJ/kgarrow_forward
- Liquid octane is burned completely with 75% excess air. Determine the air-fuel ratio for this combustion process.arrow_forwardMethanol (CH3OH) is burned with 50% excess air. Write the balanced reaction equations for complete and actual combustion, and then determine (a) the actual air-to-fuel ratio, and (b) the enthalpy of the complete combustion of Methanol at 25°C and 1 atm assuming H₂O in the products is in the liquid form. N₁ hc=Hp-HR=Nphp-ENRIR TABLE 32 Standard enthalpies of formation Species State! 0₁ Gas Gav Ga Gas Gas Gas H₁ C. Co, но 1,0 CO Useful relations: Mair 123 ful C,H, CH,OH CH,OH Liqind Gas Gas Gas Gas Liquid Gas Liquid AF C₂B₁ сн.. At 298.15 K (25 C) and 1 aus Ah,, MJ/kmol 0 0 0 0 -393.52 241.83 285.84 110.54 -74.87 -101.85 -201.17 238.58 208.45 249.35arrow_forwardAn unknown amount of propane Fuel having a chemical formula C3H8 is burned with an unknown amount of air in a four-cylinder engine. The analysis of the engine exhaust gives the resulting reaction: 5.5 moles CO2, 18.87 moles H20, unknown moles 02, unknown moles N2, 8.8 moles CO and 0.2 moles H2: The number of moles of the products is: Select one: O a. 201.2 O b. 97.2 O c. 121.9 O d. 145.9 O e. 98.7arrow_forward
- Ethylene (C₂H4) is burned with 180% theoretical air during a combustion process. Assuming that the combustion is complete and the pressure of the combustion products is 100 kPa, determine (a) the air-fuel ratio and (b) the dew point temperature of the products.arrow_forwardH.W.3.5 Propylene (C3H6) is burned with 50 percent excess air during a combustion process. Assuming complete combustion and a total pressure of 105 kPa, determine (a) the air-fuel ratio and (b) the temperature at which the water vapor in the products will start condensing (c) the product analysis based on volume and mass.arrow_forwardC4Hs is burned in an engine with a fuel-rich air-fuel ratio. Dry analysis of the exhaust gives the following volume percents: CO2 = 14.95%, C4H8 0.75%, CO = 0%, H2 = 0%, O2 = 0%, with the rest being N2. Higher heating value of this fuel is QHHV = 46.9 MJ/kg. Write the balanced chemical equation for one mole of this fuel at these conditions. Calculate; a) Air-fuel ratio. b) Equivalence ratio. c) Lower heating value of fuel. [MJ/kg] d) Energy released when one kg of this fuel is burned in the engine with a combustion efficiency of 98%. [MJ]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
What is entropy? - Jeff Phillips; Author: TED-Ed;https://www.youtube.com/watch?v=YM-uykVfq_E;License: Standard youtube license