Propane gas (C3H8) enters a steady-flow combustion chamber at 1 atm and 25°C and is burned with air that enters the combustion chamber at the same state. Determine the adiabatic flame temperature for (a) complete combustion with 100 percent theoretical air, (b) complete combustion with 200 percent theoretical air, and (c) incomplete combustion (some CO in the products) with 90 percent theoretical air.
(a)
The adiabatic flame temperature for complete combustion with 100 percent theoretical air.
Answer to Problem 103RP
The adiabatic flame temperature for complete combustion with 100 percent theoretical air is
Explanation of Solution
Express the theoretical combustion equation of propane
Here, propane is
As the combustion process is a steady flow process, thus heat lost is equal to the heat gained.
Here, number of moles of products is
Conclusion:
Refer Equation (I), and write the number of moles of products and reactant.
Here, number of moles of products carbon dioxide, water and nitrogen is
Refer Appendix Table A-18, A-19, A-20, A-21, A-23 and A-26 and write the property table for products and reactants as in Table (1).
Substance |
|
|
0 | 8682 | |
0 | 8669 | |
9904 | ||
8669 | ||
9364 |
Substitute the values from Table (I) into Equation (II) to get,
Perform trial and error method to balance the Equation (III).
Iteration I:
Take
Iteration II:
Take
Perform the interpolation method to obtain the adiabatic flame temperature of the product gases.
Write the formula of interpolation method of two variables.
Here, the variables denote by x and y is enthalpy and adiabatic flame temperature respectively
Show the adiabatic flame temperature corresponding to enthalpy as in Table (1).
Enthalpy |
Adiabatic flame temperature |
2350 | |
2400 |
Substitute
Thus, the adiabatic flame temperature when burning with 100% theoretical air is,
Hence, the adiabatic flame temperature for complete combustion with 100 percent theoretical air is
(b)
The adiabatic flame temperature for complete combustion with 200 percent theoretical air.
Answer to Problem 103RP
The adiabatic flame temperature for complete combustion with 200 percent theoretical air is
Explanation of Solution
Express the balanced combustion equation of propane
As the combustion process is a steady flow process, thus heat lost is equal to the heat gained.
Conclusion:
Refer Equation (V), and write the number of moles of products and reactant.
Here, number of moles of products carbon dioxide, water nitrogen and oxygen is
Substitute the values from Table (I) into Equation (VI) to get,
Perform trial and error method to balance the Equation (VII).
Iteration I:
Take
Iteration II:
Take
Show the adiabatic flame temperature corresponding to enthalpy as in Table (2).
Enthalpy |
Adiabatic flame temperature |
1500 | |
1540 |
Substitute
Thus, the adiabatic flame temperature when burning with 200% theoretical air is,
Hence, the adiabatic flame temperature for complete combustion with 200 percent theoretical air is
(c)
The adiabatic flame temperature for incomplete combustion with 90 percent theoretical air.
Answer to Problem 103RP
The adiabatic flame temperature for incomplete combustion with 90 percent theoretical air is
Explanation of Solution
Express the balanced combustion equation for incomplete combustion with 90% theoretical air.
As the combustion process is a steady flow process, thus heat lost is equal to the heat gained.
Conclusion:
Refer Equation (VIII), and write the number of moles of products and reactant.
Here, number of moles of products carbon monoxide is
Substitute the values from Table (I) into Equation (IX) to get,
Perform trial and error method to balance the Equation (X).
Iteration I:
Take
Iteration II:
Take
Show the adiabatic flame temperature corresponding to enthalpy as in Table (3).
Enthalpy |
Adiabatic flame temperature |
2250 | |
2300 |
Substitute
Thus, the adiabatic flame temperature for incomplete combustion with 90 percent theoretical air,
Hence, the adiabatic flame temperature for incomplete combustion with 90 percent theoretical air is
Want to see more full solutions like this?
Chapter 15 Solutions
THERMODYNAMICS(SI UNITS,INTL.ED)EBOOK>I
- Determine the tension developed in cables AB and AC and the force developed along strut AD for equilibrium of the 400-lb crate. x. 5.5 ft C 2 ft Z 2 ft D 6 ft B 4 ft A 2.5 ftarrow_forwardA block of mass m hangs from the end of bar AB that is 7.2 meters long and connected to the wall in the xz plane. The bar is supported at A by a ball joint such that it carries only a compressive force along its axis. The bar is supported at end B by cables BD and BC that connect to the xz plane at points C and D respectively with coordinates given in the figure. Cable BD is elastic and can be modeled as a linear spring with a spring constant k = 400 N/m and unstretched length of 6.34 meters. Determine the mass m, the compressive force in beam AB and the tension force in cable BC. Z D (c, 0, d) C (a, 0, b), A e B y f m BY NC SA x 2016 Eric Davishahl Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 8.1 m b 3.3 m C 2.7 m d 3.9 m e 2 m f 5.4 m The mass of the block is The compressive force in bar AB is The tension in cable S is N. kg.arrow_forwardTwo squirrels are sitting on the rope as shown. The squirrel at A has a weight of 1.2 lb. The squirrel at B found less food this season and has a weight of 0.8 lb. The angles 0 and > are equal to 50° and 60° respectively. Determine the tension force in each of the rope segments (T₁ in segment, T₂ in segment Я, and T3 in segment DD) as well as the angle a in degrees. Ө A α B Note the figure may not be to scale. T₁ = lb lb T2 T3 = = lb απ deg A BY NC SA 2013 Michael Swanbomarrow_forward
- Each cord can sustain a maximum tension of 500 N. Determine the largest mass of pipe that can be supported. B 60° A E Harrow_forward2. Link BD consists of a single bar 1 in. wide and 0.5 in. thick. Knowing that each pin has a in. diameter, determine (a) the maximum value of the normal stress in link BD and the bearing stress in link BD if 0 = 0, (b) the maximum value of the normal stress in link BD if 0 = 90. -6 in.- 12 in. 30° D 4 kipsarrow_forwardIn the image is a right rectangular pyramid of total mass m. Note the location of point Q. Determine the inertia dyadic for the pyramid P, relative to point Q for e hat unit vectors.arrow_forward
- turbomachieneryarrow_forwardauto controlsarrow_forwardA 4 ft 300 Ib 1000 Ib.ft 350 Ib C 2 ft 3. 45° 250 Ib B. 3ft B 25ft 200 Ib 150 Ib Replace the force system acting on the frame shown in the figure by a resultant force (magnitude and direction), and specify where its line of action intersects member (AB), measured from point (A).arrow_forward
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning