Write the expression to calculate the number of moles of constituent (N) in a mixture.
N=mM (I)
Here, mass of the gas constituent is m and the molecular mass of the constitute is M.
Write the expression to calculate the total number of moles of gases (Nm) in products.
Nm=NA+NB+..............+NZ (II)
Here, number of moles of compound A is NA, number of moles of compound B is NB, and the number of moles of compound Z is NZ.
Write the expression to calculate the mole fraction of a constituent (y) in a mixture.
y=NNm (III)
Write the expression to calculate the mass of the mixture of gases (mtotal).
mtotal=NAMA+NBMB+.......+NZMZ (IV)
Here, number of moles of the compound A in the product is NA, the molecular weight of the compound A is MA, number of moles of compound B is NB, molecular weight of compound B is MB
Write the expression to calculate the apparent molecular weight of the product gas (Mm).
Mm=mmNm (V)
Here, mass of the product gas is mm.
Write the expression to calculate the heat transfer (q) for the combustion.
q=hC=HP−HR
q=∑NPh¯f,Po−∑NRh¯f,Ro (VI)
Here, enthalpy of combustion is hC, enthalpy of the products is HP, enthalpy of reactants is HR, number of moles of product gas is NP, enthalpy of formation of product gas is h¯f,Po, number of moles of reactants is NR, and the enthalpy of formation of reactants is h¯f,Ro.
Write the expression to calculate the heating value of coal.
HV=−hCMm (VII)
Conclusion:
From the Table A-1 of “Molar mass, gas constants, and critical-point properties”, select the molar masses of carbon, hydrogen, oxygen, Sulphur, and air as,
MC=12kg/kmolMH2=2kg/kmolMO2=32kg/kmolMS=32kg/kmolMair=29kg/kmol
Consider for 100 kg of coal. Substitute 67.40 kg for mC and 12 kg/kmol for MC in Equation (I).
NC=67.40 kg12 kg/kmol=5.617 kmol
Substitute 5.31 kg for mH2 and 2 kg/kmol for MH2 in Equation (I).
NH2=5.31 kg2 kg/kmol=2.655 kmol
Substitute 15.11 kg for mO2 and 32 kg/kmol for MO2 in Equation (I).
NO2=15.11 kg32 kg/kmol=0.4722 kmol
Substitute 1.44 kg for mN2 and 28 kg/kmol for MN2 in Equation (I).
NN2=1.44 kg28 kg/kmol=0.05143 kmol
Substitute 2.36 kg for mS and 32 kg/kmol for MS in Equation (I).
NS=2.36 kg32 kg/kmol=0.07375 kmol
Substitute 5.617 kmol for NC, 2.655 kmol for NH2, 0.4722 kmol for NO2, 0.05143 kmol for NN2, and 0.07375 kmol for NS in Equation (II).
(Nm)reactants=(5.617 kmol+2.655 kmol+0.4722 kmol+0.05143 kmol+0.07375 kmol)=8.869 kmol
Substitute 5.617 kmol for NC and 8.869 kmol for Nm in Equation (III).
yC=5.617 kmol8.869 kmol=0.6333
Substitute 2.655 kmol for NH2 and 8.869 kmol for Nm in Equation (III).
yH2=2.655 kmol8.869 kmol=0.2994
Substitute 0.4722 kmol for NO2 and 8.869 kmol for Nm in Equation (III).
yO2=0.4722 kmol8.869 kmol=0.05323
Substitute 0.05143 kmol for NN2 and 8.869 kmol for Nm in Equation (III).
yN2=0.05143 kmol8.869 kmol=0.00580
Substitute 0.07375 kmol for NS and 8.869 kmol for Nm in Equation (III).
yS=0.07375 kmol8.869 kmol=0.00832
Write the chemical reaction equation for complete combustion.
{0.6333C+0.2994H2+0.05323O2+0.00580N2+0.00832S+ath(O2+3.76N2)}→(xCO2+yH2O+zSO2+kN2) (VIII)
Balance for the Carbon from Combustion reaction Equation (VIII).
x=0.6333
Balance for the Hydrogen from Combustion reaction Equation (VIII).
y=0.2994
Balance for the Sulphur from Combustion reaction Equation (VIII).
z=0.00832
Balance for the Oxygen from Combustion reaction Equation (VIII).
0.05323+ath=x+0.5y+z
Substitute 0.6333 for x, 0.2994 for y, and 0.00832 for z.
0.05323+ath=0.6333+0.5(0.2994)+0.00832ath=0.7381
Balance for the Nitrogen from Combustion reaction Equation (VIII).
k=0.00580+3.76ath
Substitute 0.7381 for ath.
k=0.00580+3.76(0.7381)k=2.781
Rewrite the complete balanced chemical reaction for combustion as follows:
{0.6333C+0.2994H2+0.05323O2+0.00580N2+0.00832S+0.7381(O2+3.76N2)}→(0.6333CO2+0.2994H2O+0.00832SO2+2.781N2) (IX)
Substitute 0.6333 kmol for NC, 0.2994 kmol for NH2, 0.00832 kmol for NS, 0.05323 kmol for NO2, and 0.00580 kmol for NN2 in Equation (II).
(Nm)reactants=(0.6333 kmol+0.2994 kmol+0.00832 kmol+0.05323 kmol+0.000580 kmol)≃1.0 kmol
Substitute 0.6333 kmol for NC, 0.2994 kmol for NH2, 0.00832 kmol for NS, 0.05323 kmol for NO2, 0.00580 kmol for NN2, 12 kg/kmol for MC, 2 kg/kmol for MH2, 32 kg/kmol for MO2, 28kg/kmol for MN2, and 32 kg/kmol for MS in Equation (IV).
mtotal={(0.6333 kmol)12kg/kmol+(0.2994 kmol)2kg/kmol+(0.05323 kmol)32 kg/kmol+(0.00580 kmol)28kg/kmol+(0.00832 kmol)32kg/kmol}=10.3304 kg
Substitute 10.3304 kg for mm and 1 kmol for Nm in Equation (V).
Mm=10.3304 kg1 kmol=10.33 kg/kmol
From the Table A-26 of “Enthalpy of formation, Gibbs function of formation, and the absolute entropy at 25°C, 1 atm”, obtain the enthalpy of formations as,
(h¯fo)N2=0(h¯fo)CO2=−393,520 kJ/kmol(h¯fo)H2O,l=−285,830 kJ/kmol(h¯fo)H2O,g=−241,820 kJ/kmol(h¯fo)SO2=−297,100 kJ/kmol
Here, the enthalpy of formation of N2 is (h¯fo)N2, the enthalpy of formation of CO2 is (h¯fo)CO2, the enthalpy of formation for H2O in vapor is (h¯fo)H2O,g, the enthalpy of formation for H2O in liquid is (h¯fo)H2O,l, and the enthalpy of formation of SO2 is (h¯fo)SO2.
Rewrite the Equation (VI) for the higher heating value.
hC=NCO2(h¯fo)CO2+NH2O(h¯fo)H2O,l+NSO2(h¯fo)SO2+NN2(h¯fo)N2 (X)
Substitute 0.6333 kmol for NCO2, −393,520 kJ/kmol for (h¯fo)CO2, −285,830 kJ/kmol for (h¯fo)H2O,l, 0 for (h¯fo)N2, 0.2994 kmol for NH2O, −297,100 kJ/kmol for (h¯fo)SO2, and 0.00832 kmol for NSO2 in Equation (X).
hC={0.6333 kmol(−393,520 kJ/kmol)+0.2994 kmol(−285,830 kJ/kmol)+0.00832 kmol(−297,100 kJ/kmol)+NN2(0)}hC=−337,270 kJ/kmol coal
Substitute 10.33 kg/kmol for Mm and −337,270 kJ/kmol coal for hC in Equation (VII).
HHV=−(−337,270 kJ/kmol coal)10.33 kg/kmol≃33,650 kJ/kg coal
Thus, the higher heating value of the coal is 33,650 kJ/kg coal.
Rewrite the Equation (VI) for the higher heating value.
hC=NCO2(h¯fo)CO2+NH2O(h¯fo)H2O,g+NSO2(h¯fo)SO2+NN2(h¯fo)N2 (XI)
Substitute 0.6333 kmol for NCO2, −393,520 kJ/kmol for (h¯fo)CO2, −241,820 kJ/kmol for (h¯fo)H2O,g, 0 for (h¯fo)N2, 0.2994 kmol for NH2O, −297,100 kJ/kmol for (h¯fo)SO2, and 0.00832 kmol for NSO2 in Equation (XI).
hC={0.6333 kmol(−393,520 kJ/kmol)+0.2994 kmol(−241,820 kJ/kmol)+0.00832 kmol(−297,100 kJ/kmol)+NN2(0)}hC=−324,090 kJ/kmol coal
Substitute 10.33 kg/kmol for Mm and −324,090 kJ/kmol coal for hC in Equation (VII).
LHV=−(−324,090 kJ/kmol coal)10.33 kg/kmol≃31,370 kJ/kg coal
Thus, the lower heating value of the coal is 31,370 kJ/kg coal.