THERMODYNAMICS(SI UNITS,INTL.ED)EBOOK>I
8th Edition
ISBN: 9781307434316
Author: CENGEL
Publisher: INTER MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 15.7, Problem 101RP
A 6-m3 rigid tank initially contains a mixture of 1 kmol of hydrogen (H2) gas and the stoichiometric amount of air at 25°C. The contents of the tank are ignited, and all the hydrogen in the fuel burns to H2O. If the combustion products are cooled to 25°C, determine (a) the fraction of the H2O that condenses and (b) the heat transfer from the combustion chamber during this process.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Liquid propane (C3H8) enters a combustion chamber at 25°C at a rate of 0.05 kg/min where it is mixed and burned with 50 percent excess air that enters the combustion chamber at 7°C. An analysis of the combustion gases reveals that all the hydrogen in the fuel burns to H2O but only 90 percent of the carbon burns to CO2, with the remaining 10 percent forming CO. If the exit temperature of the combustion gases is 1500 K, determine
1-The balanced chemical equation for the actual process
2-Air- Fuel ratio
3-The mass flow rate of air
Liquid propane (C3H8) enters a combustion chamber at 25°C at a rate of
0.07 kg/min where it is mixed and burned with 40 percent excess air that
enters the combustion chamber at 7°C. An analysis of the combustion
gases reveals that all the hydrogen in the fuel burns to H,0 but only 75
percent of the carbon burns to CO, with the remaining 25 percent forming
CO. determine (a) the balanced equation for actual combustion process
and (b) the mass flow rate of air.
One Kmol of C8H18 is burned with 100% air containing 25 Kmol of O2. Determine the air-fuel ratio for this combustion process.
Chapter 15 Solutions
THERMODYNAMICS(SI UNITS,INTL.ED)EBOOK>I
Ch. 15.7 - How does the presence of N2 in air affect the...Ch. 15.7 - Prob. 2PCh. 15.7 - Prob. 3PCh. 15.7 - Is the airfuel ratio expressed on a mole basis...Ch. 15.7 - Prob. 5PCh. 15.7 - Prob. 6PCh. 15.7 - Prob. 7PCh. 15.7 - What does 100 percent theoretical air represent?Ch. 15.7 - Consider a fuel that is burned with (a) 130...Ch. 15.7 - Are complete combustion and theoretical combustion...
Ch. 15.7 - What are the causes of incomplete combustion?Ch. 15.7 - Which is more likely to be found in the products...Ch. 15.7 - Methane (CH4) is burned with the stoichiometric...Ch. 15.7 - Prob. 14PCh. 15.7 - n-Butane fuel (C4H10) is burned with the...Ch. 15.7 - Prob. 16PCh. 15.7 - Prob. 17PCh. 15.7 - 15–18 n-Octane (C8H18) is burned with 50 percent...Ch. 15.7 - In a combustion chamber, ethane (C2H6) is burned...Ch. 15.7 - Prob. 20PCh. 15.7 - Prob. 21PCh. 15.7 - 15–22 One kilogram of butane (C4H10) is burned...Ch. 15.7 - 15–23E One lbm of butane (C4H10) is burned with 25...Ch. 15.7 - Prob. 24PCh. 15.7 - A fuel mixture of 60 percent by mass methane (CH4)...Ch. 15.7 - A certain natural gas has the following volumetric...Ch. 15.7 - Prob. 27PCh. 15.7 - A gaseous fuel with a volumetric analysis of 45...Ch. 15.7 - Prob. 30PCh. 15.7 - 15–31 Octane (C8H18) is burned with dry air. The...Ch. 15.7 - Prob. 32PCh. 15.7 - Prob. 33PCh. 15.7 - Prob. 34PCh. 15.7 - Prob. 35PCh. 15.7 - Prob. 36PCh. 15.7 - Prob. 37PCh. 15.7 - Prob. 38PCh. 15.7 - Prob. 39PCh. 15.7 - Prob. 40PCh. 15.7 - Prob. 41PCh. 15.7 - Prob. 42PCh. 15.7 - Prob. 44PCh. 15.7 - Repeat Prob. 1546 for liquid octane (C8H18).Ch. 15.7 - Ethane (C2H6) is burned at atmospheric pressure...Ch. 15.7 - Reconsider Prob. 1550. What minimum pressure of...Ch. 15.7 - Calculate the HHV and LHV of gaseous n-octane fuel...Ch. 15.7 - Prob. 49PCh. 15.7 - Prob. 50PCh. 15.7 - Consider a complete combustion process during...Ch. 15.7 - Prob. 53PCh. 15.7 - Prob. 54PCh. 15.7 - Propane fuel (C3H8) is burned with an airfuel...Ch. 15.7 - 15–56 Hydrogen (H2) is burned completely with the...Ch. 15.7 - Prob. 57PCh. 15.7 - Prob. 58PCh. 15.7 - Octane gas (C8H18) at 25C is burned steadily with...Ch. 15.7 - Prob. 61PCh. 15.7 - Liquid ethyl alcohol [C2H5OH(l)] at 25C is burned...Ch. 15.7 - Prob. 63PCh. 15.7 - Prob. 64PCh. 15.7 - A constant-volume tank contains a mixture of 120 g...Ch. 15.7 - Prob. 67PCh. 15.7 - Prob. 68PCh. 15.7 - Prob. 69PCh. 15.7 - A fuel is completely burned first with the...Ch. 15.7 - Prob. 71PCh. 15.7 - Acetylene gas (C2H2) at 25C is burned during a...Ch. 15.7 - Octane gas (C8H18) at 25C is burned steadily with...Ch. 15.7 - Express the increase of entropy principle for...Ch. 15.7 - Prob. 81PCh. 15.7 - What does the Gibbs function of formation gf of a...Ch. 15.7 - Liquid octane (C8H18) enters a steady-flow...Ch. 15.7 - Benzene gas (C6H6) at 1 atm and 77F is burned...Ch. 15.7 - Prob. 87PCh. 15.7 - Prob. 88PCh. 15.7 - A steady-flow combustion chamber is supplied with...Ch. 15.7 - Prob. 91RPCh. 15.7 - 15–92 A gaseous fuel with 80 percent CH4, 15...Ch. 15.7 - Prob. 93RPCh. 15.7 - Prob. 94RPCh. 15.7 - Prob. 95RPCh. 15.7 - Prob. 96RPCh. 15.7 - Prob. 97RPCh. 15.7 - Prob. 98RPCh. 15.7 - Prob. 99RPCh. 15.7 - Prob. 100RPCh. 15.7 - A 6-m3 rigid tank initially contains a mixture of...Ch. 15.7 - Prob. 102RPCh. 15.7 - Propane gas (C3H8) enters a steady-flow combustion...Ch. 15.7 - Determine the highest possible temperature that...Ch. 15.7 - Prob. 106RPCh. 15.7 - Prob. 107RPCh. 15.7 - A steam boiler heats liquid water at 200C to...Ch. 15.7 - Repeat Prob. 15112 using a coal from Utah that has...Ch. 15.7 - Liquid octane (C8H18) enters a steady-flow...Ch. 15.7 - Prob. 111RPCh. 15.7 - Prob. 112RPCh. 15.7 - Prob. 113RPCh. 15.7 - Consider the combustion of a mixture of an...Ch. 15.7 - A fuel is burned steadily in a combustion chamber....Ch. 15.7 - A fuel is burned with 70 percent theoretical air....Ch. 15.7 - Prob. 123FEPCh. 15.7 - One kmol of methane (CH4) is burned with an...Ch. 15.7 - An equimolar mixture of carbon dioxide and water...Ch. 15.7 - The higher heating value of a hydrocarbon fuel...Ch. 15.7 - Acetylene gas (C2H2) is burned completely during a...Ch. 15.7 - Prob. 129FEPCh. 15.7 - A fuel is burned during a steady-flow combustion...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Find the volume of the combustion products of 1 cu ft. Methane with 32% excess air at a pressure of 0.4 psi above atmospheric and a temperature of 1000 degree F.arrow_forwardA constant volume tank contain 1 mole of C7H14 and 12 mole of O2 gas at a temperature of 25 °C and 1 bar. The contents of the tank is ignited and C7H14 is burned completely and final products temperature is found to be 1700 K. Determine the heat transfer during this process. ( take AHo = -47800 kJ/kg).arrow_forwardUsing Hess' Law, calculate for the heat of combustion of a 1.5 liter propene (C3H6) at 14.5 psi and 80.6°F that is completely burned in air. Assume that all the water produced during the reaction is in liquid state. The standard enthalpy of formation of propene, C3H6 is +20.6 kJ/mol. The heats of formation of CO₂(g) and H₂O(l) are -394 kJ/mol and -285.8 kJ/, respectively.arrow_forward
- Q1) A constant volume tank contain 1 mole ofC7H14 and 12 mole of O2 gas at a temperature of 25 °C and 1 bar. The contents of the tank is ignited and C7H14is burned completely and final products temperature is found to be 1700 K. Determine the heat transfer during this process. ( take dalta Ho = -47800 kJ/kg).arrow_forwardDetermine the enthalpy of combustion (in kJ) when fully-consuming a 23-L tank of ethane. The ethane inside the tank is pressurized to 8 atm at 30 ⁰C.arrow_forwardOctane gas (C8H18) and atmospheric air are supplied to a combustion chamber at 25°C at the stoichiometric air/fuel ratio. The combustion takes place adiabatically under steady-flow condition. The change in velocity and the work transfer can be assumed negligible. The Enthalpy of Combustion of octane gas at 25°C is – 5,116,180 kJ/kmol (when H2O in the combustion products is in vapor phase). Determine with aid of the Table on Page 26, the final temperature of the combustion products.arrow_forward
- RP-1 is highly refined form of kerosene used for many first stage rocket engines. The average composition of it is indicated by CH1.9 a. What is the stoichiometric mixture ratio (MR) for RP-1 and oxygen? b. Now, you have a mixture of air and RP-1 with three times more air (in terms of moles) than is needed to burn all the fuel. How high is the final temperature? The heats of formation are given in the table below. In molar quantities, assume 1 mole of air is (O2+3.76N2). The reactants have a temperature of 25°C before combustion. You may use the average values of the specific heats for each constituent. C. Would the adiabatic flame temperature be lower or higher for a rocket engine that uses pure oxygen instead of air? Explain. Constituent Qf kJ/kmol @ 298 K Cp kJ/kmol K CH19 9,358 CO2 (g) -393,522 51.9 O2 (g) 0 34.0 N2 (g) 0 31.6 H₂0 (g) -241.827 40.6arrow_forwardA gaseous mixture of methane, ethane and propane has their percent volume of 38%, 42% and 20% respectively. What is the mass percentage of methane in the mixture?arrow_forwardA piston-cylinder arrangement initially contains 0.002 kmol of H, and 0.01 kmol of O, at 298 K and l atm. The mixture is ignited and burns adiabatically at constant pressure. Determine the final temperature assum- ing the products contain only H20 and the excess reactant. Also deter- mine the work done during the process. Sketch the process on H-T and P-V coordinates.arrow_forward
- A volume of 10 m3 of air, at 20 ° C and 1 atm, contains 90% RH of acetone. Isothermal compression is carried out to a volume of 0.5 m3. The condensed acetone will burn at 25 ° C and 1 atm. The heat obtained will be used to evaporate refrigerant 134a at 200 kPa. Determine the mass of the refrigerant that can evaporate if all the heat that comes from the combustion of this acetone is used.arrow_forwardDefine specific heats. Differentiate between specific heats at constant pressure and constant volume. Give their examples. Write the values of cp, cv, R, and γ for air and combustion products.arrow_forwardA constant-volume tank contains a mixture of 120 g of methane (CH4) gas and 600 g of O2 at 25°C and 200 kPa. The contents of the tank are now ignited, and the methane gas burns completely. If the final temperature is 1200 K, determine (a) the final pressure in the tank and (b) the heat transfer during this process.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Extent of Reaction; Author: LearnChemE;https://www.youtube.com/watch?v=__stMf3OLP4;License: Standard Youtube License