In Prob. 15.201, the speed of point B is known to be constant. For the position shown, determine (a) the angular acceleration of the guide arm, (b) the acceleration of point C.
15.201 Several rods are brazed together to form the robotic guide arm shown that is attached to a ball-and-socket joint at O. Rod OA slides in a straight inclined slot, while rod OB slides in a slot parallel to the z axis. Knowing that at the instant shown vB = (9 in./s)k, determine (a) the angular velocity of the guide arm, (b) the velocity of point A, (c) the velocity of point C.
Fig. P15.201
(a)

The angular acceleration of the guide arm.
Answer to Problem 15.202P
The angular acceleration of the guide arm is
Explanation of Solution
Given information:
The velocity
Calculation:
Sketch the Free Body Diagram of the robotic guide arm as shown in Figure 1.
Refer to Figure 1.
The velocity at D along the x axis is
The velocity at A along the x axis is
Calculate the position vector
The position of A.
The position of B.
The position of C.
Consider the angular velocity
Consider the velocity at A
Calculate the angular velocity of each plane using the relation of
Substitute
Resolving i, j and k components.
For i component.
For k component.
Calculate the angular velocity of each plane using the relation of
Substitute
Substitute
Resolving i, j and k components.
For i component.
For j component.
For k component.
Calculate the velocity at A
Substitute
Calculate the angular velocity along y direction
Substitute
Calculate the angular velocity
Substitute
Calculate the velocity of point A
Substitute
Calculate the velocity of point C
Substitute
Consider the angular acceleration
Consider the acceleration at A
Consider the acceleration at B
Calculate the angular acceleration at B of each plane using the relation of
Substitute
Resolving i, j and k components.
For i component.
For j component.
For k component.
Calculate the angular acceleration at A of each plane using the relation of
Substitute
Substitute 0 for
Resolving i, j and k components.
For i component.
For j component.
For k component.
Refer to Figure 1.
The acceleration at A along the x axis
Substitute
Calculate the angular acceleration along y axis
Substitute
Calculate the angular acceleration
Substitute
Therefore, the angular acceleration of the guide arm is
(b)

Find the acceleration of point C.
Answer to Problem 15.202P
The acceleration of point C is
Explanation of Solution
Given information:
The velocity at B is
Calculation:
Refer to part (a).
The angular velocity of the guide arm is
The angular acceleration of the guide arm is
The velocity at C is
Calculate the acceleration at C
Substitute
Therefore, the acceleration of point C is
Want to see more full solutions like this?
Chapter 15 Solutions
VECTOR MECHANIC
Additional Engineering Textbook Solutions
Java: An Introduction to Problem Solving and Programming (8th Edition)
Thermodynamics: An Engineering Approach
SURVEY OF OPERATING SYSTEMS
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Starting Out with Python (4th Edition)
- The manometer fluid in the figure given below is mercury where D = 3 in and h = 1 in. Estimate the volume flow in the tube (ft3/s) if the flowing fluid is gasoline at 20°C and 1 atm. The density of mercury and gasoline are 26.34 slug/ft3 and 1.32 slug/ft3 respectively. The gravitational force is 32.2 ft/s2.arrow_forwardUsing the Bernoulli equation to find the general solution. If an initial condition is given, find the particular solution. y' + xy = xy¯¹, y(0) = 3arrow_forwardTest for exactness. If exact, solve. If not, use an integrating factor as given or obtained by inspection or by the theorems in the text. a. 2xydx+x²dy = 0 b. (x2+y2)dx-2xydy = 0 c. 6xydx+5(y + x2)dy = 0arrow_forward
- Newton's law of cooling. A thermometer, reading 5°C, is brought into a room whose temperature is 22°C. One minute later the thermometer reading is 12°C. How long does it take until the reading is practically 22°C, say, 21.9°C?arrow_forwardSolve a. y' + 2xy = ex-x² b. y' + y sin x = ecosx, y(0) = −1 y(0) = −2.5arrow_forward= MMB 241 Tutorial 3.pdf 2/6 90% + + 5. The boat is traveling along the circular path with a speed of v = (0.0625t²) m/s, where t is in seconds. Determine the magnitude of its acceleration when t = 10 s. 40 m v = 0.0625² 6. If the motorcycle has a deceleration of at = (0.001s) m/s² and its speed at position A is 25 m/s, determine the magnitude of its acceleration when it passes point B. .A 90° 300 m n B 2arrow_forward
- = MMB 241 Tutorial 3.pdf 4/6 67% + 9. The car is traveling along the road with a speed of v = (2 s) m/s, where s is in meters. Determine the magnitude of its acceleration when s = 10 m. v = (2s) m/s 50 m 10. The platform is rotating about the vertical axis such that at any instant its angular position is u = (4t 3/2) rad, where t is in seconds. A ball rolls outward along the radial groove so that its position is r = (0.1+³) m, where t is in seconds. Determine the magnitudes of the velocity and acceleration of the ball when t = 1.5s.arrow_forwardThe population of a certain country is known to increase at a rate proportional to the number of people presently living in the country. If after two years the population has doubled, and after three years the population is 20,000, estimate the number of people initially living in the country.arrow_forward= MMB 241 Tutorial 3.pdf 6/6 100% + | 日 13. The slotted link is pinned at O, and as a result of the constant angular velocity *= 3 rad/s it drives the peg P for a short distance along the spiral guide r = (0.40) m, where 0 is in radians. Determine the radial and transverse components of the velocity and acceleration of P at the instant = 1/3 rad. 0.5 m P r = 0.40 =3 rad/sarrow_forward
- = MMB 241 Tutorial 3.pdf 1/6 90% + DYNAMICS OF PARTICLES (MMB 241) Tutorial 3 Topic: Kinematics of Particles:- Path and Polar coordinate systems and general curvilinear QUESTIONS motion. 1. Determine the acceleration at s = 2 m if v = (2 s) m/s², where s is in meters. At s = 0, v = 1 m/s. 3 m 2. Determine the acceleration when t=1s if v = (4t2+2) m/s, where t is in seconds. v=(4²+2) m/s 6 marrow_forward5.112 A mounting bracket for electronic components is formed from sheet metal with a uniform thickness. Locate the center of gravity of the bracket. 0.75 in. 3 in. ༧ Fig. P5.112 1.25 in. 0.75 in. y r = 0.625 in. 2.5 in. 1 in. 6 in. xarrow_forward4-105. Replace the force system acting on the beam by an equivalent resultant force and couple moment at point B. A 30 in. 4 in. 12 in. 16 in. B 30% 3 in. 10 in. 250 lb 260 lb 13 5 12 300 lbarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





