Concept explainers
Pin P is attached to the wheel shown and slides in a slot cut in bar BD. The wheel rolls to the right without slipping with a constant angular velocity of 20 rad/s. Knowing that x = 480 mm when θ = 0, determine the angular velocity of the bar and the relative velocity of pin P with respect to the rod when (a) θ = 0, (b) θ = 90°.
Fig. P15.154
(a)

Find the angular velocity of the bar when
Find the relative velocity of the pin P with respect to the rod when
Answer to Problem 15.154P
The angular velocity of the bar when
The relative velocity of the pin P with respect to the rod when
Explanation of Solution
Given information:
The constant angular velocity of the wheel is
The distance BA is
The distance AP is
The radius of the wheel is
Consider the relative velocity of the pin P with respect to the rod is denoted by u.
Calculation:
Show the wheel and the rod arrangement as shown in Figure 1.
Refer Figure 1.
Consider the coordinates of the point A, B, C, and P are
Calculate the value of the distance
Consider the angular velocity of the wheel AC is
Consider the angular velocity of the rod BD is
Consider the velocity of the point P with respect to point A is denoted by
Show the velocity at point P
Consider the velocity of the point P with respect to point F is denoted by
Show the velocity at point P
Equate Equation (1) and (2).
Equate the horizontal component of the Equation (3) as follows:
Take the direction towards right as positive.
Equate the vertical component of the Equation (3) as follows:
Take the direction towards downward as positive.
Calculate the value of the angle
Substitute
Modify Equation (4) as follows:
Substitute
Modify Equation (5) as follows:
Substitute
Substitute
Thus, the angular velocity of the bar when
Calculate the relative velocity of the pin P with respect to the rod when
Substitute
Thus, the relative velocity of the pin P with respect to the rod when
(b)

Find the angular velocity of the bar when
Find the relative velocity of the pin P with respect to the rod when
Answer to Problem 15.154P
The angular velocity of the bar when
The relative velocity of the pin P with respect to the rod when
Explanation of Solution
Given information:
Calculation:
Consider the value of the angle
Refer to Part (a).
Calculate the value of the angle
Substitute
Modify Equation (4) as follows:
Substitute
Thus, the relative velocity of the pin P with respect to the rod when
Modify Equation (5) as follows:
Substitute
Thus, the angular velocity of the bar when
Want to see more full solutions like this?
Chapter 15 Solutions
VECTOR MECHANIC
Additional Engineering Textbook Solutions
Elementary Surveying: An Introduction To Geomatics (15th Edition)
Mechanics of Materials (10th Edition)
Fluid Mechanics: Fundamentals and Applications
Concepts Of Programming Languages
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
- Test for exactness. If exact, solve. If not, use an integrating factor as given or obtained by inspection or by the theorems in the text. a. 2xydx+x²dy = 0 b. (x2+y2)dx-2xydy = 0 c. 6xydx+5(y + x2)dy = 0arrow_forwardNewton's law of cooling. A thermometer, reading 5°C, is brought into a room whose temperature is 22°C. One minute later the thermometer reading is 12°C. How long does it take until the reading is practically 22°C, say, 21.9°C?arrow_forwardSolve a. y' + 2xy = ex-x² b. y' + y sin x = ecosx, y(0) = −1 y(0) = −2.5arrow_forward
- = MMB 241 Tutorial 3.pdf 2/6 90% + + 5. The boat is traveling along the circular path with a speed of v = (0.0625t²) m/s, where t is in seconds. Determine the magnitude of its acceleration when t = 10 s. 40 m v = 0.0625² 6. If the motorcycle has a deceleration of at = (0.001s) m/s² and its speed at position A is 25 m/s, determine the magnitude of its acceleration when it passes point B. .A 90° 300 m n B 2arrow_forward= MMB 241 Tutorial 3.pdf 4/6 67% + 9. The car is traveling along the road with a speed of v = (2 s) m/s, where s is in meters. Determine the magnitude of its acceleration when s = 10 m. v = (2s) m/s 50 m 10. The platform is rotating about the vertical axis such that at any instant its angular position is u = (4t 3/2) rad, where t is in seconds. A ball rolls outward along the radial groove so that its position is r = (0.1+³) m, where t is in seconds. Determine the magnitudes of the velocity and acceleration of the ball when t = 1.5s.arrow_forwardThe population of a certain country is known to increase at a rate proportional to the number of people presently living in the country. If after two years the population has doubled, and after three years the population is 20,000, estimate the number of people initially living in the country.arrow_forward
- = MMB 241 Tutorial 3.pdf 6/6 100% + | 日 13. The slotted link is pinned at O, and as a result of the constant angular velocity *= 3 rad/s it drives the peg P for a short distance along the spiral guide r = (0.40) m, where 0 is in radians. Determine the radial and transverse components of the velocity and acceleration of P at the instant = 1/3 rad. 0.5 m P r = 0.40 =3 rad/sarrow_forward= MMB 241 Tutorial 3.pdf 1/6 90% + DYNAMICS OF PARTICLES (MMB 241) Tutorial 3 Topic: Kinematics of Particles:- Path and Polar coordinate systems and general curvilinear QUESTIONS motion. 1. Determine the acceleration at s = 2 m if v = (2 s) m/s², where s is in meters. At s = 0, v = 1 m/s. 3 m 2. Determine the acceleration when t=1s if v = (4t2+2) m/s, where t is in seconds. v=(4²+2) m/s 6 marrow_forward5.112 A mounting bracket for electronic components is formed from sheet metal with a uniform thickness. Locate the center of gravity of the bracket. 0.75 in. 3 in. ༧ Fig. P5.112 1.25 in. 0.75 in. y r = 0.625 in. 2.5 in. 1 in. 6 in. xarrow_forward
- 4-105. Replace the force system acting on the beam by an equivalent resultant force and couple moment at point B. A 30 in. 4 in. 12 in. 16 in. B 30% 3 in. 10 in. 250 lb 260 lb 13 5 12 300 lbarrow_forwardSketch and Describe a hatch coaming and show how the hatch coamings are framed in to ships strucure?arrow_forwardSketch and describe hatch coamings. Describe structrual requirements to deck plating to compensate discontinuity for corners of a hatch. Show what is done to the deck plating when the decks are cut away and include the supporting members.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





