Concept explainers
Knowing that the disk has a constant angular velocity of 15 rad/s clockwise, determine the angular velocity of bar BD and the velocity of collar D when (a) θ = 0, (b) θ = 90°, (c) θ = 180°.
Fig. P15.57 and P15.58
(a)

Find the angular velocity of the bar BD and velocity of the collar D when
Answer to Problem 15.57P
The the angular velocity of the bar BD and velocity of the collar D when
Explanation of Solution
Given information:
The constant angular velocity of the disk is
The distance AB is
Calculation:
Show the disk as shown in Figure 1.
Refer to Figure 1.
Calculate the velocity at B using the relation:
Substitute
Consider that
Show the velocity
Calculate the value of angle
Consider bar BD.
Show the velocity diagram as shown in Figure 2.
Refer to Figure 2.
Show the relation between the velocity
Calculate the velocity of point D with respect to B using the relation:
Substitute
Calculate the angular velocity of bar BD using the relation:
Substitute
Thus, the angular velocity of bar BD is
Calculate the velocity of the collar
Substitute
Thus, the velocity of the collar D is
(b)

Find the angular velocity of the bar BD and velocity of the collar D when
Answer to Problem 15.57P
The angular velocity of the bar BD and velocity of the collar D are
Explanation of Solution
Calculation:
Refer to Part (a).
Show the disk as shown in Figure 3.
Refer Figure 3.
Calculate the velocity at B using the relation:
Substitute
Consider
Show the velocity
Calculate the value of angle
Consider bar BD.
Show the relation between the velocity
Equate the horizontal component of Equation (1).
Equate the vertical component of Equation (1).
Substitute 0 for
Thus, the velocity of the collar is
Calculate the angular velocity of bar BD using the relation:
Substitute
Thus, the angular velocity of bar BD is
(c)

Find the angular velocity of the bar BD and velocity of the collar D when
Answer to Problem 15.57P
The angular velocity of the bar BD and velocity of the collar D when
Explanation of Solution
Given information:
The constant angular velocity of the disk is
The distance AB is
Calculation:
Show the disk as shown in Figure 4.
Refer Figure 4.
Calculate the velocity at B using the relation:
Substitute
Consider
Show the velocity
Calculate the value of angle
Consider bar BD.
Show the velocity diagram as shown in Figure 5.
Refer Figure 5.
Show the relation between the velocity
Calculate the velocity of point D with respect to B using the relation:
Substitute
Calculate the angular velocity of bar BD using the relation:
Substitute
Thus, the angular velocity of bar BD is
Calculate the velocity of the collar
Substitute
Thus, the velocity of the collar D is
Want to see more full solutions like this?
Chapter 15 Solutions
VECTOR MECHANIC
- The 120 kg wheel has a radius of gyration of 0.7 m. A force P with a magnitude of 50 N is applied at the edge of the wheel as seen in the diagram. The coefficient of static friction is 0.3, and the coefficient of kinetic friction is 0.25. Find the acceleration and angular acceleration of the wheel.arrow_forwardAuto Controls Using MATLAB , find the magnitude and phase plot of the compensators NO COPIED SOLUTIONSarrow_forward4-81 The corner shown in Figure P4-81 is initially uniform at 300°C and then suddenly exposed to a convection environment at 50°C with h 60 W/m². °C. Assume the = 2 solid has the properties of fireclay brick. Examine nodes 1, 2, 3, 4, and 5 and deter- mine the maximum time increment which may be used for a transient numerical calculation. Figure P4-81 1 2 3 4 1 cm 5 6 1 cm 2 cm h, T + 2 cmarrow_forward
- Auto Controls A union feedback control system has the following open loop transfer function where k>0 is a variable proportional gain i. for K = 1 , derive the exact magnitude and phase expressions of G(jw). ii) for K = 1 , identify the gaincross-over frequency (Wgc) [where IG(jo))| 1] and phase cross-overfrequency [where <G(jw) = - 180]. You can use MATLAB command "margin" to obtain there quantities. iii) Calculate gain margin (in dB) and phase margin (in degrees) ·State whether the closed-loop is stable for K = 1 and briefly justify your answer based on the margin . (Gain marginPhase margin) iv. what happens to the gain margin and Phase margin when you increase the value of K?you You can use for loop in MATLAB to check that.Helpful matlab commands : if, bode, margin, rlocus NO COPIED SOLUTIONSarrow_forwardAuto Controls Hand sketch the root Focus of the following transfer function How many asymptotes are there ?what are the angles of the asymptotes?Does the system remain stable for all values of K NO COPIED SOLUTIONSarrow_forward-400" 150" in Datum 80" 90" -280"arrow_forward
- 7) Please draw the front, top and side view for the following object. Please cross this line outarrow_forwardA 10-kg box is pulled along P,Na rough surface by a force P, as shown in thefigure. The pulling force linearly increaseswith time, while the particle is motionless att = 0s untilit reaches a maximum force of100 Nattimet = 4s. If the ground has staticand kinetic friction coefficients of u, = 0.6 andHU, = 0.4 respectively, determine the velocityof the A 1 0 - kg box is pulled along P , N a rough surface by a force P , as shown in the figure. The pulling force linearly increases with time, while the particle is motionless at t = 0 s untilit reaches a maximum force of 1 0 0 Nattimet = 4 s . If the ground has static and kinetic friction coefficients of u , = 0 . 6 and HU , = 0 . 4 respectively, determine the velocity of the particle att = 4 s .arrow_forwardCalculate the speed of the driven member with the following conditions: Diameter of the motor pulley: 4 in Diameter of the driven pulley: 12 in Speed of the motor pulley: 1800 rpmarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





