Vector Mechanics For Engineers
12th Edition
ISBN: 9781259977237
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15.6, Problem 15.200P
In Prob. 15.199, determine (a) the common angular acceleration of gears land B. (b) the acceleration of the tooth of gear B that is in contact with gear D at point 2.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Question No. 18: (a) In an epicyclic gear train, an arm carries two gears A and B having 36 and 45 teeth respectively. If the arm rotates at 150 r.p.m in the anticlockwise direction about the centre of the gear A which is fixed, determine the speed of gear B. If the gear A instead of being fixed, makes 300 r.p.m in the clockwise direction, what will be the speed of gear B?
(b) Prove that the resultant unbalanced force is minimum when half of the reciprocating masses are balanced by rotating masses.
Faster please
The outer gear A rotates with an angular velocity of 6 rad/s counterclockwise. Knowing that the angular velocity of the intermediate gear B is 3 rad/s clockwise, determine: 1. The angular velocity of the arm ABC 2. The angular velocity of the outer gear C. 5 in. 10 in. C B -15 in.- -15 in.- Select one: O A. arm = 3 rad/s (CW); and @c = 1.5 rad/s (CW) O B. Warm = 5 rad/s (CW); and @c = 3 rad/s (CW) O C.o arm = 0 rad/s ; and @c = 1.5 rad/s (CCW) O D. warm = 1 rad/s (CW); and wc = 0 rad/s
Chapter 15 Solutions
Vector Mechanics For Engineers
Ch. 15.1 - A rectangular plate swings from arms of equal...Ch. 15.1 - Knowing that wheel A rotates with a constant...Ch. 15.1 - The brake drum is attached to a larger flywheel...Ch. 15.1 - The motion of an oscillation flvdee1 is defined by...Ch. 15.1 - The motion of an oscillation flywheel is defined...Ch. 15.1 - Prob. 15.4PCh. 15.1 - A small grinding wheel is attached to the shaft of...Ch. 15.1 - A connecting rod is supported by a knife-edge at...Ch. 15.1 - When studying whiplash resulting from rear-end...Ch. 15.1 - The angular acceleration of an oscillating disk is...
Ch. 15.1 - The angular acceleration of a shaft is defined by...Ch. 15.1 - Prob. 15.10PCh. 15.1 - Prob. 15.11PCh. 15.1 - The rectangular block shown rotates about the...Ch. 15.1 - The rectangular block shown rotates about the...Ch. 15.1 - A circular plate of 120-mm radius is supported by...Ch. 15.1 - In Prob. 15.14, determine the velocity and...Ch. 15.1 - The earth makes one complete revolution around the...Ch. 15.1 - The earth makes one complete revolution on its...Ch. 15.1 - The sprocket wheel and chain shown initially at...Ch. 15.1 - Prob. 15.19PCh. 15.1 - The belt sander shown is initially at rest. If the...Ch. 15.1 - The rated speed of drum B of the belt sander shown...Ch. 15.1 - The two pulleys shown may be operated with the V...Ch. 15.1 - A cyclist uses a statior.ary trainer during the...Ch. 15.1 - gear reduction system consists of three gears A,...Ch. 15.1 - A belt is pulled to the right between cylinders A...Ch. 15.1 - Ring C has an inside radius of 55 mm and an...Ch. 15.1 - At the instant shown, the angular velocity of...Ch. 15.1 - A plastic film moves over two drums. During a 4-s...Ch. 15.1 - Cylinder A is moving downward with a velocity of 3...Ch. 15.1 - The system shown is held at rest by the...Ch. 15.1 - A load is to be raised 20 ft by the hoisting...Ch. 15.1 - A simple friction drive consists of two disks A...Ch. 15.1 - Two friction wheels A and B are both rotating...Ch. 15.1 - Two friction disks A and B are to be brought into...Ch. 15.1 - Two friction disks A and B are brought into...Ch. 15.1 - Steel tape is being wound onto a spool that...Ch. 15.1 - Prob. 15.37PCh. 15.2 - The ball rolls without slipping on the fixed...Ch. 15.2 - Three uniform rods—ABC, DCE, and FGH—are connected...Ch. 15.2 - An automobile travel, to the right at a constant...Ch. 15.2 - Prob. 15.39PCh. 15.2 - A painter is halfway up a 10-m ladder when the...Ch. 15.2 - Rod AB can slide freely along the floor and the...Ch. 15.2 - Rod AB can slide freely along the floor and the...Ch. 15.2 - Rod AB moves over a small wheel at C while end A...Ch. 15.2 - The disk shown moves in the xy plane. Knowing that...Ch. 15.2 - The disk shown moves in the xy p1ane. Knowing that...Ch. 15.2 - Prob. 15.46PCh. 15.2 - Velocity sensors are placed on a satellite that is...Ch. 15.2 - In the planetary gear system shown, the radius of...Ch. 15.2 - In the planetary gear system shown, the radius of...Ch. 15.2 - The outer gear C rotates with an angular velocity...Ch. 15.2 - In the simplified sketch of a ball bearing shown,...Ch. 15.2 - A simplified gear system for a mechanical watch is...Ch. 15.2 - Arm ACB rotates about point C with an angular...Ch. 15.2 - Arm ACB rotates about point C with an angular...Ch. 15.2 - Knowing that at the instant shown the angular...Ch. 15.2 - Prob. 15.56PCh. 15.2 - Knowing that the disk has a constant angular...Ch. 15.2 - The disk has a constant angular velocity of 20...Ch. 15.2 - The test rig is shown was developed to perform...Ch. 15.2 - In the concentric shown, a disk of 2-in. radius...Ch. 15.2 - In the engine system shown, l=160mmandb=60mm ....Ch. 15.2 - In the engine system shown, l=160 mm and b=60 mm....Ch. 15.2 - Knowing that the angular velocity of rod DE is a...Ch. 15.2 - In the position shown bar AB has an anu1ar...Ch. 15.2 - Linkage DBEF is part of a windshield wiper...Ch. 15.2 - Roberts linkage is named after Richard Roberts...Ch. 15.2 - Roberts linkage is named after Richard Roberts...Ch. 15.2 - For the oil pump rig shown, link AB causes the...Ch. 15.2 - For the oil pump rig shown, link AB causes the...Ch. 15.2 - Both 6-in.-radius wheels roll without slipping on...Ch. 15.2 - The 80-mm-radius wheel shown rolls to the left...Ch. 15.2 - For the gearing shown, derive an expression for...Ch. 15.3 - The disk rolls without sliding on the fixed...Ch. 15.3 - Bar BDE is pinned to two links, AB and CD. At the...Ch. 15.3 - A juggling club is thrown vertically into the air....Ch. 15.3 - At the instant shown during deceleration, the...Ch. 15.3 - A helicopter moves horizontally in the x direction...Ch. 15.3 - A 60-mm-radius drum is rigidly attached to a...Ch. 15.3 - Prob. 15.77PCh. 15.3 - In order to uncoil electrical wire from a...Ch. 15.3 - In order to uncoil electrical wire from a spool...Ch. 15.3 - The arm ABC rotates with an angular velocity of 4...Ch. 15.3 - The double gear rolls on the stationary left rack...Ch. 15.3 - An overhead door is guided by wheels at A and B...Ch. 15.3 - Rod ABD is guided by wheels at A and B that roll...Ch. 15.3 - Knowing that at the instant shown the angular...Ch. 15.3 - Prob. 15.85PCh. 15.3 - A motor at O drives the windshield wiper mechanism...Ch. 15.3 - A motor at O drives the windshield wiper mechanism...Ch. 15.3 - Rod AB can slide freely along the floor and the...Ch. 15.3 - Small wheels have been attached to the ends of bar...Ch. 15.3 - Two slots have been cut in plate FG and the plate...Ch. 15.3 - The disk is released from rest and rolls down the...Ch. 15.3 - The pin at B is attached to member ABD and can...Ch. 15.3 - Two identical rods ABF and DBE are Connected by a...Ch. 15.3 - Ann ABD is connected by pins to a collar at B and...Ch. 15.3 - Two rods ABD and DE are Connected to three collars...Ch. 15.3 - Two 500-mm rods are pin-connected at D as shown....Ch. 15.3 - At the instant shown, the velocity of collar A is...Ch. 15.3 - Prob. 15.98PCh. 15.3 - Describe the space centrode and the body centrode...Ch. 15.3 - Describe the space centrode and the body centrode...Ch. 15.3 - Using the method of Sec. 15.3, solve Prob. 15.60.Ch. 15.3 - Using the method of Sec. 15.3, solve Prob. 15.64.Ch. 15.3 - Using the method of Sec. 15.3, solve Prob. 15.65.Ch. 15.3 - Using the method of Sec. 15.3, solve Prob. 15.38.Ch. 15.4 - A rear-wheel-drive car starts from rest and...Ch. 15.4 - A 5-m steel beam is lowered by means of two cables...Ch. 15.4 - For a 5-m steel beam AE, the acceleration of point...Ch. 15.4 - A 900-mm rod rests on a horizontal table A force P...Ch. 15.4 - In Prob. 15.107, determine the point of the rod...Ch. 15.4 - Knowing that point A is moving to the right at a...Ch. 15.4 - Knowing that at the instant shown crank BC has a...Ch. 15.4 - automobile travels to the left at a constant speed...Ch. 15.4 - The 18-in.-radius flywheel is rigidly attached to...Ch. 15.4 - A 3-in.-radius drum is rigidly attached to a...Ch. 15.4 - A 3-in.-radius drum is rigidly attached to a...Ch. 15.4 - A heavy crate is being moved a sbo1 distance using...Ch. 15.4 - A wheel rolls without slipping on a fixed...Ch. 15.4 - The 100-nun-radius drum rolls without slipping on...Ch. 15.4 - In the planetary gear system shown, the radius of...Ch. 15.4 - The 200-mm-radius disk rolls without sliding on...Ch. 15.4 - Knowing that crank AB rotates about point A with a...Ch. 15.4 - Knowing that crank AB rotates about point A with a...Ch. 15.4 - In the two-cylinder air compressor shown, the...Ch. 15.4 - Prob. 15.123PCh. 15.4 - Arm AB has a constant angular velocity of 16 rad/s...Ch. 15.4 - Arm AB has a constant angular velocity of 16 rad/s...Ch. 15.4 - A straight rack rests on a gear of radius r=3 in....Ch. 15.4 - The elliptical exercise machine has fixed axes of...Ch. 15.4 - The elliptical exercise machine has fixed axes of...Ch. 15.4 - Prob. 15.129PCh. 15.4 - Knowing that at the instant shown bar DE has an...Ch. 15.4 - Knowing that at the instant shown bar AB has a...Ch. 15.4 - Prob. 15.132PCh. 15.4 - Prob. 15.133PCh. 15.4 - Prob. 15.134PCh. 15.4 - Roberts linkage is named after Richard Roberts...Ch. 15.4 - For the oil pump rig shown, link AB causes the...Ch. 15.4 - Denoting by rA the position vector of a point A of...Ch. 15.4 - The drive disk of the Scotch crosshead mechanism...Ch. 15.4 - The wheels attached to the ends of rod AB roll...Ch. 15.4 - The wheels attached to the ends of rod AB roll...Ch. 15.4 - A disk of radius r rolls to the right with a...Ch. 15.4 - Ladder AB moves over a smooth corner at C while...Ch. 15.4 - Prob. 15.143PCh. 15.4 - Crank4B rotates with a constant c1ockise angular...Ch. 15.4 - Crank 4B rotates with a constant clockwise angular...Ch. 15.4 - Solve the engine system from Sample Prob. 15.15...Ch. 15.4 - The position of rod AB is controlled by a disk of...Ch. 15.4 - A wheel of radius r rolls without slipping along...Ch. 15.4 - In Prob. 15. 148, show that the path of P is a...Ch. 15.5 - A person walks radially inward on a platform that...Ch. 15.5 - Prob. 15.150PCh. 15.5 - Prob. 15.151PCh. 15.5 - Two rotating rods are connected by slider block P....Ch. 15.5 - Two rotating rods are connected by slider block P....Ch. 15.5 - Pin P is attached to the wheel shown and slides in...Ch. 15.5 - Knowing that at the instant shown the angular...Ch. 15.5 - Knowing that at the instant shown the anu1ar...Ch. 15.5 - The motion of pin P is guided by slots cut in...Ch. 15.5 - Four pins slide in four separate slots cut in a...Ch. 15.5 - Solve Prob. 15.158, assuming that the plate...Ch. 15.5 - The cage of a mine elevator moves downward at a...Ch. 15.5 - Prob. 15.161PCh. 15.5 - A rocket sled is tested o a straight track that is...Ch. 15.5 - Prob. 15.163PCh. 15.5 - Prob. 15.164PCh. 15.5 - Prob. 15.165PCh. 15.5 - In the automated welding setup shown, the position...Ch. 15.5 - In the automated welding setup shown, the position...Ch. 15.5 - A chain is looped around two gears of radius 40 mm...Ch. 15.5 - A chain is looped around two gears of radius 40 mm...Ch. 15.5 - Prob. 15.170PCh. 15.5 - The human leg can be crudely approximated as two...Ch. 15.5 - The collar P slides outward at a constant relative...Ch. 15.5 - Pin P slides in a circular slot cut in the plate...Ch. 15.5 - Rod AD is bent in the shape of an are of a circle...Ch. 15.5 - Solve Prob. 15.l74 when =90 .Ch. 15.5 - Prob. 15.176PCh. 15.5 - Prob. 15.177PCh. 15.5 - In Prob. 15.177, determine the angular velocity...Ch. 15.5 - Prob. 15.179PCh. 15.5 - Prob. 15.180PCh. 15.5 - Rod AB passes through a collar that is welded to...Ch. 15.5 - Solve Prob. 15.181 assuming block A moves to the...Ch. 15.5 - In Prob. 15.157, determine the acceleration of pin...Ch. 15.6 - The bowling ball shown rolls without slipping on...Ch. 15.6 - The bowling ball shown rolls without slipping on...Ch. 15.6 - Prob. 15.186PCh. 15.6 - At the instant considered, the radar antenna shown...Ch. 15.6 - Prob. 15.188PCh. 15.6 - The disk of a portable sander rotates at the...Ch. 15.6 - Prob. 15.190PCh. 15.6 - Prob. 15.191PCh. 15.6 - In the system shown, disk A is free to rotate...Ch. 15.6 - Prob. 15.193PCh. 15.6 - A radar system is used to track a new experimental...Ch. 15.6 - Prob. 15.195PCh. 15.6 - A 3-in-radius disk spins at the constant rate 2=4...Ch. 15.6 - The cone shown rolls on the zx plane with its apex...Ch. 15.6 - At the instant shown, the robotic arm ABC is being...Ch. 15.6 - Prob. 15.199PCh. 15.6 - In Prob. 15.199, determine (a) the common angular...Ch. 15.6 - Several rods are brazed together to form the...Ch. 15.6 - In Prob. 15.201, the speed of point B is known to...Ch. 15.6 - Rod AB of length 25 in. is connected by ball...Ch. 15.6 - Rod AB has a length of 13 in. and is connected by...Ch. 15.6 - Rod BC and BD are each 840 mm long and are...Ch. 15.6 - Rod AB is connected by ball-and-socket joints to...Ch. 15.6 - Rod AB of length 29 in. is connected by...Ch. 15.6 - Rod AB of length 300 mm is connected by ball...Ch. 15.6 - Rod AB of length 300 mm is connected by...Ch. 15.6 - Two shafts AC and EG, which lie in the vertical yz...Ch. 15.6 - Solve Prob. 15.210, assuming that the arm of the...Ch. 15.6 - Rod BC has a length of 42 in. and is connected by...Ch. 15.6 - Rod AB has a length of 275 mm and is connected by...Ch. 15.6 - For the mechanism of Prob.15.204, determine the...Ch. 15.6 - In Prob. 15.205, determine the acceleration of...Ch. 15.6 - In Prob. 15.206, determine the acceleration of...Ch. 15.6 - In Prob. 15.207, determine the acceleration of...Ch. 15.6 - In Prob. 15.208, determine the acceleration of...Ch. 15.6 - In Prob. 15.209, determine the acceleration of...Ch. 15.7 - A flight simulator is used to train pilots on how...Ch. 15.7 - A flight simulator is used to train pilots on how...Ch. 15.7 - Prob. 15.222PCh. 15.7 - Prob. 15.223PCh. 15.7 - Rod AB is welded to the 0.3-m-radius plate that...Ch. 15.7 - The bent rod shown rotates at the constant rate of...Ch. 15.7 - The bent pipe shown rotates at the constant rate...Ch. 15.7 - The circular plate shown rotates about its...Ch. 15.7 - Manufactured items are spray-painted as they pass...Ch. 15.7 - Solve Prob. 15.227, assuming that at the instant...Ch. 15.7 - Solve Prob. 15.225, assuming that at the instant...Ch. 15.7 - Using the method of Sec. 15.7A, solve Prob....Ch. 15.7 - Using the method of Sec. 15.7A, solve Prob....Ch. 15.7 - Using the method of Sec. 15.7A, solve Prob....Ch. 15.7 - The 400-mm bar AB is made to rotate at the...Ch. 15.7 - The 400-mm bar AB is made to rotate at the rate...Ch. 15.7 - The arm AB of length 16 ft is used to provide an...Ch. 15.7 - The remote manipulator system (RMS) shown is used...Ch. 15.7 - A disk with a radius of 120 mm rotates at the...Ch. 15.7 - The crane shown rotates at the constant rate...Ch. 15.7 - Prob. 15.240PCh. 15.7 - Prob. 15.241PCh. 15.7 - Prob. 15.242PCh. 15.7 - Prob. 15.243PCh. 15.7 - A square plate of side 2r is welded to a vertical...Ch. 15.7 - Two disks, each of 130-mm radius, are welded to...Ch. 15.7 - In Prob. 15.245, determine the velocity and...Ch. 15.7 - The position of the stylus tip A is controlled by...Ch. 15 - A wheel moves in the xy plane in such a way that...Ch. 15 - Two blocks and a pulley e connected by...Ch. 15 - A baseball pitching machine is designed to deliver...Ch. 15 - The flywheel OD on the elliptical machine analyzed...Ch. 15 - Prob. 15.252RPCh. 15 - Knowing that at the instant shown rod AB has zero...Ch. 15 - Rod AB is attached to a collar at A and is fitted...Ch. 15 - flows through a curved pipe .AB that rotates with...Ch. 15 - A disk of 0.15-m radius rotates at the constant...Ch. 15 - Two rods AE and BD pass through holes drilled into...Ch. 15 - Rod BC of length 24 in. is connected by ball...Ch. 15 - In the positions shown, the thin rod moves at a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A gear reduction system consists of three gears A, B, and C. Knowing that gear A rotates clockwise with a constant angular velocity w, = 600 rpm, determine the magnitude of angular velocities of gears B and C. (Answer: @g = 300 rpm, ccw @c = 100 rpm, cw ) 2 in. 2 in. 4 in. 6 in.arrow_forward1. A gear reduction system consists of three gears A, B, and C. Knowing that gear A rotates clockwise with a constant angular velocity a- 600 rpm, determine (a) the angular velocities of gears B and C, (b) the accelerations of the points on gears B and C which are in contact. 2 in. 2 in. 4 in. 6 in. 2. In the planctary gear system shown, the radius of gears A, B, C, and D is 3 in. and the radius of the outer gear E is 9 in. Knowing that gear E has an angular vekocity of 120 rpm clockwise and that the central gear has an angular velocity of 150 rpm elockwise, determine (a) the angular velocity of cach planetary gear, (b) the angular velocity of the spider connecting the planetary gears. Earrow_forward▸ 17.9 Each of the gears A and B has a weight of 5 lb and a radius of gyration of 4 in., while gear C has a weight of 25 lb and a radius of gyration of 7.5 in. A couple M of magnitude 6.75 lb ft is applied to gear C. Deter- mine (a) the number of revolutions of gear C required for its angular veloc- ity to increase from 100 to 450 rpm, (b) the corresponding tangential force acting on gear A. 4 in 10 in Fig. P17.9arrow_forward
- 3. The 40.64 cm. diameter pulley of a gasoline engine is connected by a belt (which is assumed not to slip) to the pulley of the pump. The belt speed is 1200 m. / min. Determine (1) the angular speed of the engine pulley in RPM and in rad / sec. and the diameter in cm. of the pump pulley if the pump speed is one-half the speed of the engine pulley.arrow_forward8.6 A pair of gear, having 40 and 20 teeth respectively, are rotating in mesh, the speed of the smaller being 2000 r.p.m. Determine the velocity of sliding between the gear teeth face at the point of engagement, at the pitch point and at the point of disengagements if the smaller gear is the driver. The distances of engagement and disengagement from the pitch point along a common tangent to the base circles are 1.3 cm and 1 cm respectively. (DAV Indore, 1983)arrow_forwardThe outer gear A rotates with an angular velocity of 2 rad/s counterclockwise. Knowing that the angular velocity of the intermediate gear B is 4 rad/s clockwise, determine: 1. The angular velocity of the arm ABC 2. The angular velocity of the outer gear C. 5 in. 10 in. B 15 in. 15 in.arrow_forward
- 3. In the planetary gear system shown the radius of gears A, B, C, and Dis 3 in. and the radius of the outer gear E is 9 in. Knowing that gear A has a constant angular velocity of 150 rpm clockwise and that the outer gear E is stationary, determine the magnitude of the acceleration of the tooth of gear D that is in contact with (a) gear A. (b) gear E. 4. Each of the gears A and B has a mass of 2.4 kg and a radius of gyration of 60 mm, while gear C has a mass of 12 kg and a radius of gyration of 150 mm. A couple Mof constant magnitude 10 Nm is applied to gear C. Determine (a) the mumber of revolutions of gear C required for its angular velocity to increase from 100 to 450 rpm, (b) the corresponding tangential force acting on gear A. S0 mm, S0 mm 200 mmarrow_forwardThere are two adjacent gears A and B, with 23 and 42 teeth respectively. Initially, both gears are only rotating, with A rotating clockwise with angular velocity 1 rad/s, and B rotating counterclockwise. When making complex decisions, gear A's angular speed increases while gear B maintains its angular speed. As a result, gear A rolls without slipping around the circumference of gear B. If it takes 1 second for gear A to complete 1 revolution around gear B, then what's the new angular velocity of gear A? Answer in rad/s and 3 Significant Figures. Make sure to use the proper sign convention (CW : - :: CCW : +).arrow_forwardIn an epicyclic gear train, arm C carries two gears A and B having 36 and 45 teeth respectively. If the arm rotates at 150 r.p.m. in the anticlockwise direction about the centre of the gear A which is fixed, determine the speed of gear B. If the gear A instead of being fixed, makes 300 r.p.m. in the clockwise direction, what will be the speed of gear B ? A Arm Carrow_forward
- Faster pleasearrow_forwardA simplified gear system for a mechanical watch is shown. Know that gear A has a constant angular velocity of 1 rev/h and gear Chas a constant angular velocity of 1 rpm. Given: dh=0.5 in. and ch=0.37 in. d2 A. d1 Determine the radius r. (You must provide an answer before moving on to the next part.) The radius ris in.arrow_forwardIf gear A rotates with a constant angular acceleration of aA = 89 rad/s2, starting from rest, determine: a) The time, in seconds, required by gear D to reach an angular velocity of 686 rpm. The radii of the gears are: TA = 11 mm rB = 45 mm rc = 26 mm TD = 52 mm b) El número de revoluciones que da el engranaje D para lograr la velocidad angular de 686 rpm.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Transmission; Author: Terry Brown Mechanical Engineering;https://www.youtube.com/watch?v=YVm4LNVp1vA;License: Standard Youtube License