
Concept explainers
Roberts linkage is named after Richard Roberts (1789-1864) and can be used to draw a close approximation to a straight line by locating a pen at point F. The distance AB is the same as BF, DF, and DE. Knowing that at the instant shown bar AB has a constant angular velocity of 4 rad/s clockwise, determine (a) the angular acceleration of bar DE, (b) the acceleration of point F.
Fig. P 15.135

(a)
Angular acceleration of bar DE.
Answer to Problem 15.135P
The angular acceleration
Explanation of Solution
Given information:
Constant angular velocity of link AB is
The absolute value of point A:
The relative velocity of A with respect to B is defined as:
The absolute acceleration of point B is defined as:
The tangential acceleration is defined as:
The normal acceleration is defined as:
In above equations:
Calculation:
The position vector
The velocity
Substitute:
The position vector
The velocity
Substitute
For bar DE
The position vector
The velocity
Equate components in equation 1 and 2:
Therefore
Bar AB has constant angular velocity. Therefore angular acceleration
Acceleration
For object BDF:
Acceleration
Substitute:
For bar DE
Acceleration
Substitute
Equate components
Therefore
Conclusion:
The angular acceleration

(b)
Acceleration of point F.
Answer to Problem 15.135P
The acceleration
Explanation of Solution
Given information:
Constant angular velocity of link AB is
The absolute acceleration of point B is defined as:
The tangential acceleration is defined as:
The normal acceleration is defined as:
In above equations
Calculation:
According to sub part a:
The acceleration
Angular acceleration
Angular velocity
Position vector
Acceleration
Substitute
Solve
The magnitude and angle of acceleration
Conclusion:
The acceleration
Want to see more full solutions like this?
Chapter 15 Solutions
Vector Mechanics For Engineers
- Please do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forwardCE-112 please solve this problem step by step and give me the correct answerarrow_forwardCE-112 please solve this problem step by step and give me the correct asnwerarrow_forward
- this is an old practice exam, the answer is Ax = -4, Ay = -12,Az = 32.5, Bx= 34, Bz = 5, By = 0 but how?arrow_forwardThis is an old practice exam, the answer is Ax = Az = 0, Ay = 2000, TDE = 4750, Cx = 2000, Cy = 2000, Cz = -800 but how?arrow_forwardthis is an old practice exam, the answer is Fmin = 290.5lb but howarrow_forward
- This is an exam review question. The answer is Pmin = 622.9 lb but whyarrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forward
- Please do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forwardThis is an old practice exam. Fce = 110lb and FBCD = 62 lb but whyarrow_forwardQuiz/An eccentrically loaded bracket is welded to the support as shown in Figure below. The load is static. The weld size for weld w1 is h1 = 4mm, for w2 h2 = 6mm, and for w3 is h3 =6.5 mm. Determine the safety factor (S.f) for the welds. F=29 kN. Use an AWS Electrode type (E100xx). 163 mm S 133 mm 140 mm Please solve the question above I solved the question but I'm sure the answer is wrong the link : https://drive.google.com/file/d/1w5UD2EPDiaKSx3W33aj Rv0olChuXtrQx/view?usp=sharingarrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage LearningInternational Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE LPrecision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage Learning
- Understanding Motor ControlsMechanical EngineeringISBN:9781337798686Author:Stephen L. HermanPublisher:Delmar Cengage LearningWelding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage LearningAutomotive Technology: A Systems Approach (MindTa...Mechanical EngineeringISBN:9781133612315Author:Jack Erjavec, Rob ThompsonPublisher:Cengage Learning





