Concept explainers
The test rig is shown was developed to perform fatigue testing on fitness trampolines. A motor drives the 9-in.-radius flywheel AB, which is pinned at its center point A, in a counterclockwise direction. The flywheel is attached to slider CD by the 18-in. connecting rod BC. Knowing that the a “feet” at D should hit the trampoline twice every second, at the instant when
Fig. P15.59
(a)
The angular velocity of the connecting rod BC
Answer to Problem 15.59P
The angular velocity of connecting rod BC is
Explanation of Solution
Given information:
Radius of flywheel is
The length of connecting rod BC is
The absolute value of point A
The relative velocity of A with respect to B is defined as
Calculation:
The angular velocity of AB
According to the geometry
Therefore
The position vector of B relative to A
Substitute
The position vector of C relative to B
Substitute
The absolute velocity of
The absolute velocity of
But we know that
According to above equations
Substitute
Equate components
Therefore
Conclusion:
The angular velocity of connecting rod BC is
(b)
The velocity of D
Answer to Problem 15.59P
Explanation of Solution
Given information:
Radius of flywheel is
The length of connecting rod BC is
The absolute value of point A
The relative velocity of A with respect to B is defined as
Calculation:
According to sub part a
We have found
And
Equate components
Therefore
We know that
Therefore
Conclusion:
The velocity of point D is
(c)
The velocity of mid-point CB
Answer to Problem 15.59P
The velocity of mid-point of CB is
Explanation of Solution
Given information:
Radius of flywheel is
The length of connecting rod BC is
The absolute value of point E
The relative velocity of E with respect to C is defined as
Calculation:
Assume E as the midpoint of CB
The position vector of E relative to C
Substitute
According to sub part a
The velocity of point E
Substitute
The magnitude of the velocity
The angle
Conclusion:
The velocity of mid-point of CB is
Want to see more full solutions like this?
Chapter 15 Solutions
Vector Mechanics For Engineers
- (b) A steel 'hot rolled structural hollow section' column of length 5.75 m, has the cross-section shown in Figure Q.5(b) and supports a load of 750 kN. During service, it is subjected to axial compression loading where one end of the column is effectively restrained in position and direction (fixed) and the other is effectively held in position but not in direction (pinned). i) Given that the steel has a design strength of 275 MN/m², determine the load factor for the structural member based upon the BS5950 design approach using Datasheet Q.5(b). [11] ii) Determine the axial load that can be supported by the column using the Rankine-Gordon formula, given that the yield strength of the material is 280 MN/m² and the constant *a* is 1/30000. [6] 300 600 2-300 mm wide x 5 mm thick plates. Figure Q.5(b) L=5.75m Pinned Fixedarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forward
- Q2: For the following figure, find the reactions of the system. The specific weight of the plate is 500 lb/ft³arrow_forwardQ1: For the following force system, find the moments with respect to axes x, y, and zarrow_forwardQ10) Body A weighs 600 lb contact with smooth surfaces at D and E. Determine the tension in the cord and the forces acting on C on member BD, also calculate the reaction at B and F. Cable 6' 3' wwwarrow_forward
- Help ارجو مساعدتي في حل هذا السؤالarrow_forwardQ3: Find the resultant of the force system.arrow_forwardQuestion 1 A three-blade propeller of a diameter of 2 m has an activity factor AF of 200 and its ratio of static thrust coefficient to static torque coefficient is 10. The propeller's integrated lift coefficient is 0.3.arrow_forward
- (L=6847 mm, q = 5331 N/mm, M = 1408549 N.mm, and El = 8.6 x 1014 N. mm²) X A ΕΙ B L Y Marrow_forwardCalculate the maximum shear stress Tmax at the selected element within the wall (Fig. Q3) if T = 26.7 KN.m, P = 23.6 MPa, t = 2.2 mm, R = 2 m. The following choices are provided in units of MPa and rounded to three decimal places. Select one: ○ 1.2681.818 O 2. 25745.455 O 3. 17163.636 O 4. 10727.273 ○ 5.5363.636arrow_forwardIf L-719.01 mm, = 7839.63 N/m³, the normal stress σ caused by self-weight at the location of the maximum normal stress in the bar can be calculated as (Please select the correct value of σ given in Pa and rounded to three decimal places.) Select one: ○ 1. 1409.193 2. 845.516 O 3. 11273.545 ○ 4.8455.159 ○ 5.4509.418 6. 2818.386 7.5636.772arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY